This is the code we used in our paper accepted at ICLR workshop 2018
[Semi-Supervised Learning With GANs: Revisiting Manifold Regularization]
Bruno Lecouat*, Chuan Sheng Foo*, Houssam Zenati, Vijay Ramaseshan Chandrasekhar
Please reach us via emails or via github issues for any enquiries! Please cite our work if you find it useful for your research and work!
@misc{
lecouat2018,
title={Semi-Supervised Learning With GANs: Revisiting Manifold Regularization},
author={Bruno Lecouat and Chuan Sheng Foo and Houssam Zenati and Vijay Ramaseshan Chandrasekhar},
year={2018},
url={https://openreview.net/forum?id=Hy5QRt1wz}
}
The repo supports python 3.5 + tensorflow 1.4
To reproduce our results on SVHN
python train_svhn.py
To reproduce our results on CIFAR-10
python train_cifar.py
Here is a comparison of different models using standard architectures (1000 labels on SVHN, and 4000 labels on CIFAR):
Method | SVHN (% errors) | CIFAR (% errors) |
---|---|---|
CatGAN | - | 19.58 +/- 0.46 |
Ladder Network | - | 20.40 +/- 0.47 |
FM | 8.11 +/- 1.3 | 18.63 +/- 2.32 |
ALI | 7.42 +/- 0.65 | 17.99 +/- 1.62 |
VAT small | 6.83 | 14.87 |
Bad GAN | 4.25 +/- 0.03 | 14.41 +/- 0.30 |
Ours | 4.51 +/- 0.22 | 14.45 +/- 0.21 |