/KoBERT

Korean BERT pre-trained cased (KoBERT)

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0


Korean BERT pre-trained cased (KoBERT)

Why'?'

Training Environment

  • Architecture
predefined_args = {
        'attention_cell': 'multi_head',
        'num_layers': 12,
        'units': 768,
        'hidden_size': 3072,
        'max_length': 512,
        'num_heads': 12,
        'scaled': True,
        'dropout': 0.1,
        'use_residual': True,
        'embed_size': 768,
        'embed_dropout': 0.1,
        'token_type_vocab_size': 2,
        'word_embed': None,
    }
  • 학습셋
데이터 문장 단어
한국어 위키 5M 54M
한국어 뉴스 20M 270M
  • 학습 환경
    • V100 GPU x 32, Horovod(with InfiniBand)

2019-04-29 텐서보드 로그

  • 사전(Vocabulary)
    • 크기 : 8,002
    • 한글 위키 + 뉴스 텍스트 기반으로 학습한 토크나이저(SentencePiece)
    • Less number of parameters(92M < 110M )

Requirements

  • Python >= 3.6
  • PyTorch >= 1.1.0
  • MXNet >= 1.4.0
  • gluonnlp >= 0.6.0
  • sentencepiece >= 0.1.6
  • onnxruntime >= 0.3.0
  • transformers >= 2.1.1

How to install

git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .

How to use

Using with PyTorch

>>> import torch
>>> from kobert.pytorch_kobert import get_pytorch_kobert_model
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> model, vocab  = get_pytorch_kobert_model()
>>> all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
>>> pooled_output.shape
torch.Size([2, 768])
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> all_encoder_layers[-1][0]
tensor([[-0.2461,  0.2428,  0.2590,  ..., -0.4861, -0.0731,  0.0756],
        [-0.2478,  0.2420,  0.2552,  ..., -0.4877, -0.0727,  0.0754],
        [-0.2472,  0.2420,  0.2561,  ..., -0.4874, -0.0733,  0.0765]],
       grad_fn=<SelectBackward>)

model은 디폴트로 eval()모드로 리턴됨, 따라서 학습 용도로 사용시 model.train()명령을 통해 학습 모드로 변경할 필요가 있다.

  • Naver Sentiment Analysis Fine-Tuning with pytorch
    • Colab에서 [런타임] - [런타임 유형 변경] - 하드웨어 가속기(GPU) 사용을 권장합니다.
    • Open In Colab

Using with ONNX

>>> import onnxruntime
>>> import numpy as np
>>> from kobert.utils import get_onnx
>>> onnx_path = get_onnx()
>>> sess = onnxruntime.InferenceSession(onnx_path)
>>> input_ids = [[31, 51, 99], [15, 5, 0]]
>>> input_mask = [[1, 1, 1], [1, 1, 0]]
>>> token_type_ids = [[0, 0, 1], [0, 1, 0]]
>>> len_seq = len(input_ids[0])
>>> pred_onnx = sess.run(None, {'input_ids':np.array(input_ids),
>>>                             'token_type_ids':np.array(token_type_ids),
>>>                             'input_mask':np.array(input_mask),
>>>                             'position_ids':np.array(range(len_seq))})
>>> # Last Encoding Layer
>>> pred_onnx[-2][0]
array([[-0.24610452,  0.24282141,  0.25895312, ..., -0.48613444,
        -0.07305173,  0.07560554],
       [-0.24783179,  0.24200465,  0.25520486, ..., -0.4877185 ,
        -0.0727044 ,  0.07536091],
       [-0.24721591,  0.24196623,  0.2560626 , ..., -0.48743123,
        -0.07326943,  0.07650235]], dtype=float32)

ONNX 컨버팅은 soeque1께서 도움을 주셨습니다.

Using with MXNet-Gluon

>>> import mxnet as mx
>>> from kobert.mxnet_kobert import get_mxnet_kobert_model
>>> input_id = mx.nd.array([[31, 51, 99], [15, 5, 0]])
>>> input_mask = mx.nd.array([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = mx.nd.array([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_mxnet_kobert_model(use_decoder=False, use_classifier=False)
>>> encoder_layer, pooled_output = model(input_id, token_type_ids)
>>> pooled_output.shape
(2, 768)
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> encoder_layer[0]
[[-0.24610372  0.24282135  0.2589539  ... -0.48613444 -0.07305248
   0.07560539]
 [-0.24783105  0.242005    0.25520545 ... -0.48771808 -0.07270523
   0.07536077]
 [-0.24721491  0.241966    0.25606337 ... -0.48743105 -0.07327032
   0.07650219]]
<NDArray 3x768 @cpu(0)>
  • Naver Sentiment Analysis Fine-Tuning with MXNet
    • Open In Colab

Tokenizer

>>> from gluonnlp.data import SentencepieceTokenizer
>>> from kobert.utils import get_tokenizer
>>> tok_path = get_tokenizer()
>>> sp  = SentencepieceTokenizer(tok_path)
>>> sp('한국어 모델을 공유합니다.')
['▁한국', '어', '▁모델', '을', '▁공유', '합니다', '.']

Subtasks

Naver Sentiment Analysis

Model Accuracy
BERT base multilingual cased 0.875
KoBERT 0.901

KoBERT와 CRF로 만든 한국어 객체명인식기

문장을 입력하세요:  SKTBrain에서 KoBERT 모델을 공개해준 덕분에 BERT-CRF 기반 객체명인식기를 쉽게 개발할 수 있었다.
len: 40, input_token:['[CLS]', '▁SK', 'T', 'B', 'ra', 'in', '에서', '▁K', 'o', 'B', 'ER', 'T', '▁모델', '을', '▁공개', '해', '준', '▁덕분에', '▁B', 'ER', 'T', '-', 'C', 'R', 'F', '▁기반', '▁', '객', '체', '명', '인', '식', '기를', '▁쉽게', '▁개발', '할', '▁수', '▁있었다', '.', '[SEP]']
len: 40, pred_ner_tag:['[CLS]', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', '[SEP]']
decoding_ner_sentence: [CLS] <SKTBrain:ORG>에서 <KoBERT:POH> 모델을 공개해준 덕분에 <BERT-CRF:POH> 기반 객체명인식기를 쉽게 개발할 수 있었다.[SEP]

Version History

  • v.0.1 : 초기 모델 릴리즈
  • v.0.1.1 : 사전(vocabulary)과 토크나이저 통합

Contacts

KoBERT 관련 이슈는 이곳에 등록해 주시기 바랍니다.

License

KoBERT는 Apache-2.0 라이선스 하에 공개되어 있습니다. 모델 및 코드를 사용할 경우 라이선스 내용을 준수해주세요. 라이선스 전문은 LICENSE 파일에서 확인하실 수 있습니다.