- 구글 BERT base multilingual cased의 한국어 성능 한계
- Architecture
predefined_args = {
'attention_cell': 'multi_head',
'num_layers': 12,
'units': 768,
'hidden_size': 3072,
'max_length': 512,
'num_heads': 12,
'scaled': True,
'dropout': 0.1,
'use_residual': True,
'embed_size': 768,
'embed_dropout': 0.1,
'token_type_vocab_size': 2,
'word_embed': None,
}
- 학습셋
데이터 | 문장 | 단어 |
---|---|---|
한국어 위키 | 5M | 54M |
한국어 뉴스 | 20M | 270M |
- 학습 환경
- V100 GPU x 32, Horovod(with InfiniBand)
- 사전(Vocabulary)
- 크기 : 8,002
- 한글 위키 + 뉴스 텍스트 기반으로 학습한 토크나이저(SentencePiece)
- Less number of parameters(92M < 110M )
- Python >= 3.6
- PyTorch >= 1.1.0
- MXNet >= 1.4.0
- gluonnlp >= 0.6.0
- sentencepiece >= 0.1.6
- onnxruntime >= 0.3.0
- transformers >= 2.1.1
git clone https://github.com/SKTBrain/KoBERT.git
cd KoBERT
pip install -r requirements.txt
pip install .
>>> import torch
>>> from kobert.pytorch_kobert import get_pytorch_kobert_model
>>> input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
>>> input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_pytorch_kobert_model()
>>> all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
>>> pooled_output.shape
torch.Size([2, 768])
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> all_encoder_layers[-1][0]
tensor([[-0.2461, 0.2428, 0.2590, ..., -0.4861, -0.0731, 0.0756],
[-0.2478, 0.2420, 0.2552, ..., -0.4877, -0.0727, 0.0754],
[-0.2472, 0.2420, 0.2561, ..., -0.4874, -0.0733, 0.0765]],
grad_fn=<SelectBackward>)
model
은 디폴트로 eval()
모드로 리턴됨, 따라서 학습 용도로 사용시 model.train()
명령을 통해 학습 모드로 변경할 필요가 있다.
- Naver Sentiment Analysis Fine-Tuning with pytorch
>>> import onnxruntime
>>> import numpy as np
>>> from kobert.utils import get_onnx
>>> onnx_path = get_onnx()
>>> sess = onnxruntime.InferenceSession(onnx_path)
>>> input_ids = [[31, 51, 99], [15, 5, 0]]
>>> input_mask = [[1, 1, 1], [1, 1, 0]]
>>> token_type_ids = [[0, 0, 1], [0, 1, 0]]
>>> len_seq = len(input_ids[0])
>>> pred_onnx = sess.run(None, {'input_ids':np.array(input_ids),
>>> 'token_type_ids':np.array(token_type_ids),
>>> 'input_mask':np.array(input_mask),
>>> 'position_ids':np.array(range(len_seq))})
>>> # Last Encoding Layer
>>> pred_onnx[-2][0]
array([[-0.24610452, 0.24282141, 0.25895312, ..., -0.48613444,
-0.07305173, 0.07560554],
[-0.24783179, 0.24200465, 0.25520486, ..., -0.4877185 ,
-0.0727044 , 0.07536091],
[-0.24721591, 0.24196623, 0.2560626 , ..., -0.48743123,
-0.07326943, 0.07650235]], dtype=float32)
ONNX 컨버팅은 soeque1께서 도움을 주셨습니다.
>>> import mxnet as mx
>>> from kobert.mxnet_kobert import get_mxnet_kobert_model
>>> input_id = mx.nd.array([[31, 51, 99], [15, 5, 0]])
>>> input_mask = mx.nd.array([[1, 1, 1], [1, 1, 0]])
>>> token_type_ids = mx.nd.array([[0, 0, 1], [0, 1, 0]])
>>> model, vocab = get_mxnet_kobert_model(use_decoder=False, use_classifier=False)
>>> encoder_layer, pooled_output = model(input_id, token_type_ids)
>>> pooled_output.shape
(2, 768)
>>> vocab
Vocab(size=8002, unk="[UNK]", reserved="['[MASK]', '[SEP]', '[CLS]']")
>>> # Last Encoding Layer
>>> encoder_layer[0]
[[-0.24610372 0.24282135 0.2589539 ... -0.48613444 -0.07305248
0.07560539]
[-0.24783105 0.242005 0.25520545 ... -0.48771808 -0.07270523
0.07536077]
[-0.24721491 0.241966 0.25606337 ... -0.48743105 -0.07327032
0.07650219]]
<NDArray 3x768 @cpu(0)>
- Pretrained Sentencepiece tokenizer
>>> from gluonnlp.data import SentencepieceTokenizer
>>> from kobert.utils import get_tokenizer
>>> tok_path = get_tokenizer()
>>> sp = SentencepieceTokenizer(tok_path)
>>> sp('한국어 모델을 공유합니다.')
['▁한국', '어', '▁모델', '을', '▁공유', '합니다', '.']
- Dataset : https://github.com/e9t/nsmc
Model | Accuracy |
---|---|
BERT base multilingual cased | 0.875 |
KoBERT | 0.901 |
문장을 입력하세요: SKTBrain에서 KoBERT 모델을 공개해준 덕분에 BERT-CRF 기반 객체명인식기를 쉽게 개발할 수 있었다.
len: 40, input_token:['[CLS]', '▁SK', 'T', 'B', 'ra', 'in', '에서', '▁K', 'o', 'B', 'ER', 'T', '▁모델', '을', '▁공개', '해', '준', '▁덕분에', '▁B', 'ER', 'T', '-', 'C', 'R', 'F', '▁기반', '▁', '객', '체', '명', '인', '식', '기를', '▁쉽게', '▁개발', '할', '▁수', '▁있었다', '.', '[SEP]']
len: 40, pred_ner_tag:['[CLS]', 'B-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'I-ORG', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'B-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'I-POH', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', '[SEP]']
decoding_ner_sentence: [CLS] <SKTBrain:ORG>에서 <KoBERT:POH> 모델을 공개해준 덕분에 <BERT-CRF:POH> 기반 객체명인식기를 쉽게 개발할 수 있었다.[SEP]
- v.0.1 : 초기 모델 릴리즈
- v.0.1.1 : 사전(vocabulary)과 토크나이저 통합
KoBERT
관련 이슈는 이곳에 등록해 주시기 바랍니다.
KoBERT
는 Apache-2.0 라이선스 하에 공개되어 있습니다. 모델 및 코드를 사용할 경우 라이선스 내용을 준수해주세요. 라이선스 전문은 LICENSE
파일에서 확인하실 수 있습니다.