/CommonSenseMultiHopQA

Code for EMNLP 2018 paper "Commonsense for Generative Multi-Hop Question Answering Tasks"

Primary LanguagePythonMIT LicenseMIT

Commonsense for Generative Multi-Hop Question Answering Tasks (EMNLP 2018)

This repository contains the code and setup instructions for our EMNLP 2018 paper "Commonsense for Generative Multi-Hop Question Answering Tasks". See full paper here.

Environment Setup

We trained our models with python 2 and TensorFlow 1.3, a full list of python packages is listed in requirements.txt

Downloading Data

First, to setup the directory structure, please run setup.sh to create the appropriate directories.

We download the raw data for NarrativeQA and WikiHop. For NarrativeQA, we download from github, starting at the root of the directory, run

cd raw_data
git clone https://github.com/deepmind/narrativeqa.git

For WikiHop, we download the QAngaroo dataset here, and extract the zip file into the raw_data directory.

We use pre-computed ELMo representations. Download our pre-computed ELMo representation here, and extract into the folder lm_data.

We also use a local version of ConceptNet's relations. Download the relations file from here and put it in the folder data.

Build Processed Datasets

We need to build processed datasets with extracted commonsense information. For NarrativeQA, we run:

python src/config.py \
    --mode build_dataset \
    --data_dir raw_data/narrativeqa \
    --load_commonsense \
    --commonsense_file data/cn_relations_orig.txt \
    --processed_dataset_train data/narrative_qa_train.jsonl \
    --processed_dataset_valid data/narrative_qa_valid.jsonl \
    --processed_dataset_test data/narrative_qa_test.jsonl

To build processed datasets with extracted commonsense for WikiHop, we run:

python src/config.py \
    --mode build_wikihop_dataset \
    --data_dir raw_data/qangaroo_v1.1 \
    --load_commonsense \
    --commonsense_file data/cn_relations_orig.txt \
    --processed_dataset_train data/wikihop_train.jsonl \
    --processed_dataset_valid data/wikihop_valid.jsonl 

Training & Evaluation

Training

To train models for NarrativeQA, run:

python src/config.py \
    --version {commonsense_nqa, baseline_nqa} \
    --model_name <model_name> \
    --processed_dataset_train data/narrative_qa_train.jsonl \
    --processed_dataset_valid data/narrative_qa_valid.jsonl \
    --batch_size 24 \
    --max_target_iterations 15 \
    --dropout_rate 0.2 

To train models for WikiHop, run:

python src/config.py \
    --version {commonsense_wh, baseline_wh} \
    --model_name <model_name> \
    --elmo_options_file lm_data/wh/elmo_2x4096_512_2048cnn_2xhighway_options.json \
    --elmo_weight_file lm_data/wh/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5 \
    --elmo_token_embedding_file lm_data/wh/elmo_token_embeddings.hdf5 \
    --elmo_vocab_file lm_data/wh/wikihop_vocab.txt \
    --processed_dataset_train data/wikihop_train.jsonl \
    --processed_dataset_valid data/wikihop_valid.jsonl \
    --multiple_choice \
    --max_target_iterations 4 \
    --max_iterations 8 \
    --batch_size 16 \
    --max_target_iterations 4 \
    --max_iterations 8 \
    --max_context_iterations 1300 \
    --dropout_rate 0.2

Evaluation

To evaluate NarrativeQA, we need to first generate official answers on the test set. To do so, run:

python src/config.py \
    --mode generate_answers \
    --processed_dataset_valid data/narrative_qa_valid.jsonl \
    --processed_dataset_test data/narrative_qa_test.jsonl 

This will create the reference files val_ref0.txt, val_ref1.txt, test_ref0.txt and test_ref1.txt.

To evaluate a model on NarrativeQA, run:

python src/config.py \
    --mode test \
    --version {commonsense_nqa, baseline_nqa} \
    --model_name <model_name> \
    --use_ckpt <ckpt_name> \
    --use_test \ # only use this flag if you want to evaluate on test set
    --processed_dataset_train data/narrative_qa_train.jsonl \
    --processed_dataset_valid data/narrative_qa_valid.jsonl \
    --processed_dataset_test data/narrative_qa_test.jsonl \
    --batch_size 24 \
    --max_target_iterations 15 \
    --dropout_rate 0.2 

which generates the output (a new file named <model_name>_preds.txt). Then run

python src/eval_generation.py <ref0> <ref1> <output>

where ref0 and ref1 are the generated reference files for the automatic metrics.

To evaluate a model on WikiHop, run:

python src/config.py \
    --mode test \
    --version {commonsense_wh, baseline_wh} \
    --model_name <model_name> \
    --use_ckpt <ckpt_name> \
    --elmo_options_file lm_data/wh/elmo_2x4096_512_2048cnn_2xhighway_options.json \
    --elmo_weight_file lm_data/wh/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5 \
    --elmo_token_embedding_file lm_data/wh/elmo_token_embeddings.hdf5 \
    --elmo_vocab_file lm_data/wh/wikihop_vocab.txt \
    --processed_dataset_train data/wikihop_train.jsonl \
    --processed_dataset_valid data/wikihop_valid.jsonl \
    --multiple_choice \
    --max_target_iterations 4 \
    --max_iterations 8 \
    --batch_size 16 \
    --max_target_iterations 4 \
    --max_iterations 8 \
    --max_context_iterations 1300 \
    --dropout_rate 0.2 

This outputs the test accuracy and generates an output file containing the model's predictions.

Download and Run Pre-Trained Models

We release some pretrained models for both the NarrativeQA and WikiHop datasets. The results are listed below:

NarrativeQA

Model Dev (R-L/B-1/B-4/M/C) Test (R-L/B-1/B-4/M/C)
Baseline 48.10/45.83/20.62/20.28/163.87 46.15/44.55/21.16/19.60/159.51
Commonsense 51.70/49.28/23.18/22.17/179.13 50.15/48.44/24.01/21.76/178.95

These NarrativeQA models resulted from further tuning after the paper's publication and have better performance than those presented in the paper.

WikiHop

Model Dev Acc (%) Test Acc (%)
Baseline 56.2% 57.5%
Commonsense 58.5% 57.9%

These WikiHop results are after tuning on the official/full WikiHop validation set, these numbers will appear in an upcoming arxiv update available here.

Download our pretrained models here:

Download and extract them to the out repo, and see above for how to evaluate these models.

Bibtex

@inproceedings{bauerwang2019commonsense,
  title={Commonsense for Generative Multi-Hop Question Answering Tasks},
  author={Lisa Bauer*, Yicheng Wang* and Mohit Bansal},
  booktitle={Proceedings of the Empirical Methods in Natural Language Processing},
  year={2018}
}