/Blind2Unblind

This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Primary LanguagePython

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots

Blind2Unblind

Citing Blind2Unblind

@inproceedings{wang2022blind2unblind,
  title={Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots}, 
  author={Zejin Wang and Jiazheng Liu and Guoqing Li and Hua Han},
  booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Installation

The model is built in Python3.8.5, PyTorch 1.7.1 in Ubuntu 18.04 environment.

Data Preparation

1. Prepare Training Dataset

  • For processing ImageNet Validation, please run the command

    python ./dataset_tool.py
  • For processing SIDD Medium Dataset in raw-RGB, please run the command

    python ./dataset_tool_raw.py

2. Prepare Validation Dataset

​ Please put your dataset under the path: ./Blind2Unblind/data/validation.

Pretrained Models

Download pre-trained models: Google Drive

The pre-trained models are placed in the folder: ./Blind2Unblind/pretrained_models

# # For synthetic denoising
# gauss25
./pretrained_models/g25_112f20_beta19.7.pth
# gauss5_50
./pretrained_models/g5-50_112rf20_beta19.4.pth
# poisson30
./pretrained_models/p30_112f20_beta19.1.pth
# poisson5_50
./pretrained_models/p5-50_112rf20_beta20.pth

# # For raw-RGB denoising
./pretrained_models/rawRGB_112rf20_beta19.4.pth

# # For fluorescence microscopy denooising
# Confocal_FISH
./pretrained_models/Confocal_FISH_112rf20_beta20.pth
# Confocal_MICE
./pretrained_models/Confocal_MICE_112rf20_beta19.7.pth
# TwoPhoton_MICE
./pretrained_models/TwoPhoton_MICE_112rf20_beta20.pth

Train

  • Train on synthetic dataset
python train_b2u.py --noisetype gauss25 --data_dir ./data/train/Imagenet_val --val_dirs ./data/validation --save_model_path ../experiments/results --log_name b2u_unet_gauss25_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0
  • Train on SIDD raw-RGB Medium dataset
python train_sidd_b2u.py --data_dir ./data/train/SIDD_Medium_Raw_noisy_sub512 --val_dirs ./data/validation --save_model_path ../experiments/results --log_name b2u_unet_raw_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0
  • Train on FMDD dataset
python train_fmdd_b2u.py --data_dir ./dataset/fmdd_sub/train --val_dirs ./dataset/fmdd_sub/validation --subfold Confocal_FISH --save_model_path ../experiments/fmdd --log_name Confocal_FISH_b2u_unet_fmdd_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0

Test

  • Test on Kodak, BSD300 and Set14

    • For noisetype: gauss25

      python test_b2u.py --noisetype gauss25 --checkpoint ./pretrained_models/g25_112f20_beta19.7.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_g25_112rf20 --beta 19.7
    • For noisetype: gauss5_50

      python test_b2u.py --noisetype gauss5_50 --checkpoint ./pretrained_models/g5-50_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_g5_50_112rf20 --beta 19.4
    • For noisetype: poisson30

      python test_b2u.py --noisetype poisson30 --checkpoint ./pretrained_models/p30_112f20_beta19.1.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_p30_112rf20 --beta 19.1
    • For noisetype: poisson5_50

      python test_b2u.py --noisetype poisson5_50 --checkpoint ./pretrained_models/p5-50_112rf20_beta20.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_p5_50_112rf20 --beta 20.0
  • Test on SIDD Validation in raw-RGB space

python test_sidd_b2u.py --checkpoint ./pretrained_models/rawRGB_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name validation_b2u_unet_raw_112rf20 --beta 19.4
  • Test on SIDD Benchmark in raw-RGB space
python benchmark_sidd_b2u.py --checkpoint ./pretrained_models/rawRGB_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name benchmark_b2u_unet_raw_112rf20 --beta 19.4
  • Test on FMDD Validation

    • For Confocal_FISH
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/Confocal_FISH_112rf20_beta20.pth --test_dirs ./dataset/fmdd_sub/validation --subfold Confocal_FISH --save_test_path ./test --log_name Confocal_FISH_b2u_unet_fmdd_112rf20 --beta 20.0
    • For Confocal_MICE
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/Confocal_MICE_112rf20_beta19.7.pth --test_dirs ./dataset/fmdd_sub/validation --subfold Confocal_MICE --save_test_path ./test --log_name Confocal_MICE_b2u_unet_fmdd_112rf20 --beta 19.7
    • For TwoPhoton_MICE
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/TwoPhoton_MICE_112rf20_beta20.pth --test_dirs ./dataset/fmdd_sub/validation --subfold TwoPhoton_MICE --save_test_path ./test --log_name TwoPhoton_MICE_b2u_unet_fmdd_112rf20 --beta 20.0