/ncovmap

covid-19 map

Primary LanguageRCreative Commons Attribution 4.0 InternationalCC-BY-4.0

covid-19 data retrieve, and visualization using leaflet

2020年03月21日

Build Status License: CC BY 4.0

English | 简体中文

knitr::opts_chunk$set(
  fig.path = "man/figures/",
  message = FALSE
)

Data source

Installation

if (!require(remotes)) install.packages("remotes")
if (!require(ncovmap)) remotes::install_github("yiluheihei/ncovmap")

Feature:

  • get_ncov2(): retrieve latest or time-series data of covid-2019
  • plot_china_map(): plot on china map
  • plot_province_map(): plot on province map of china
  • plot_world_map(): plot on world map
  • plot_foreign_map(): plot on japan, korea, italy or iran map
library(ncovmap)
library(leafletCN)
library(magrittr) # for pipe

How to use

Data retrieve

# latest data
ncov <- get_ncov2(method = "api")
# ncov class inherit from data.frame
ncov
## All COVID 2019 Data
## Updated at 2020-03-21 02:59:14 
## From https://github.com/BlankerL/DXY-COVID-19-Data
data.frame(ncov) %>%
  head()
##   continentName continentEnglishName  countryName countryEnglishName
## 1          欧洲               Europe       爱尔兰            Ireland
## 2        大洋洲              Oceania 新喀里多尼亚               <NA>
## 3          亚洲                 Asia     斯里兰卡           SriLanka
## 4          非洲               Africa       突尼斯            Tunisia
## 5        北美洲        North America       阿鲁巴               <NA>
## 6          欧洲               Europe       立陶宛          Lithuania
##   provinceName provinceEnglishName province_zipCode province_confirmedCount
## 1       爱尔兰             Ireland           961003                     683
## 2 新喀里多尼亚                <NA>                0                       2
## 3     斯里兰卡            SriLanka           953007                      71
## 4       突尼斯             Tunisia           981006                      54
## 5       阿鲁巴                <NA>                0                       5
## 6       立陶宛           Lithuania           964004                      63
##   province_suspectedCount province_curedCount province_deadCount cityName
## 1                       0                   0                  3     <NA>
## 2                       0                   0                  0     <NA>
## 3                       0                   1                  0     <NA>
## 4                       0                   0                  0     <NA>
## 5                       0                   0                  0     <NA>
## 6                       0                   0                  0     <NA>
##   cityEnglishName city_confirmedCount city_suspectedCount city_curedCount
## 1            <NA>                  NA                  NA              NA
## 2            <NA>                  NA                  NA              NA
## 3            <NA>                  NA                  NA              NA
## 4            <NA>                  NA                  NA              NA
## 5            <NA>                  NA                  NA              NA
## 6            <NA>                  NA                  NA              NA
##   city_deadCount city_zipCode          updateTime
## 1             NA           NA 2020-03-21 02:59:14
## 2             NA           NA 2020-03-21 02:59:14
## 3             NA           NA 2020-03-21 02:59:14
## 4             NA           NA 2020-03-21 02:59:14
## 5             NA           NA 2020-03-21 02:59:14
## 6             NA           NA 2020-03-21 02:59:14

Data subset

# china data
china <- ncov['china']
china
## China COVID 2019 Data
## Updated at 2020-03-21 02:59:14 
## From https://github.com/BlankerL/DXY-COVID-19-Data
# Hubei province of china
hubei <- ncov['Hubei']
hubei
## Hubei COVID 2019 Data
## Updated at 2020-03-21 02:03:01 
## From https://github.com/BlankerL/DXY-COVID-19-Data
# Beijing
beijing <- ncov['Beijing']
# world data
world <- ncov['world']
world
## World COVID 2019 Data
## Updated at 2020-03-21 02:59:14 
## From https://github.com/BlankerL/DXY-COVID-19-Data
data.frame(world) %>% 
  head()
##    countryEnglishName   provinceName continentName continentEnglishName
## 1             Albania     阿尔巴尼亚          欧洲               Europe
## 2             Algeria     阿尔及利亚          非洲               Africa
## 3             Andorra         安道尔          欧洲               Europe
## 4 Antigua and Barbuda 安提瓜和巴布达        北美洲        North America
## 5           Argentina         阿根廷        南美洲        South America
## 6             Armenia       亚美尼亚          亚洲                 Asia
##      countryName provinceEnglishName province_zipCode province_confirmedCount
## 1     阿尔巴尼亚             Albania           965001                      70
## 2     阿尔及利亚             Algeria           981001                      90
## 3         安道尔             Andorra           965002                      75
## 4 安提瓜和巴布达 Antigua and Barbuda           974001                       1
## 5         阿根廷           Argentina           973001                     158
## 6       亚美尼亚             Armenia           955002                     136
##   province_suspectedCount province_curedCount province_deadCount cityName
## 1                       0                   0                  2     <NA>
## 2                       0                  12                  7     <NA>
## 3                       0                   1                  0     <NA>
## 4                       0                   0                  0     <NA>
## 5                       0                   1                  3     <NA>
## 6                       0                   1                  0     <NA>
##   cityEnglishName city_confirmedCount city_suspectedCount city_curedCount
## 1            <NA>                  NA                  NA              NA
## 2            <NA>                  NA                  NA              NA
## 3            <NA>                  NA                  NA              NA
## 4            <NA>                  NA                  NA              NA
## 5            <NA>                  NA                  NA              NA
## 6            <NA>                  NA                  NA              NA
##   city_deadCount city_zipCode          updateTime
## 1             NA           NA 2020-03-21 02:59:14
## 2             NA           NA 2020-03-21 02:59:14
## 3             NA           NA 2020-03-21 02:03:01
## 4             NA           NA 2020-03-21 02:03:01
## 5             NA           NA 2020-03-21 02:59:14
## 6             NA           NA 2020-03-21 02:59:14

china map

plot_china_map(china, legend_position = "bottomleft")

province map of china

Hubei province

plot_province_map(
  hubei, 
  "Hubei", 
  bins = c(0, 100, 200, 500, 1000, 10000)
)

Beijing

plot_province_map(
  beijing,
  "Beijing", 
  bins = c(0, 10, 50, 100)
)

world map

plot_world_map(world, legend_position = "bottomleft")

korea map

korea_ncov <- get_foreign_ncov("韩国")
plot_foreign_map(korea_ncov, "korea")

japan map

jp_ncov <- get_foreign_ncov("日本")
plot_foreign_map(jp_ncov, "japan")

iran map

iran_ncov <- get_foreign_ncov("伊朗")
plot_foreign_map(iran_ncov, "iran")

italy map

italy_ncov <- get_foreign_ncov("意大利")
plot_foreign_map(italy_ncov, "italy")

plot multiple maps

## not run
foreign_countries <- c("韩国", "伊朗", "日本", "意大利")
names(foreign_countries) <- c("korea", "iran", "japan", "italy")
htmltools::tagList(purrr::imap(
  foreign_countries, 
  ~ get_foreign_ncov(.x) %>% 
    plot_foreign_map(.y)
))

Acknowlegement