dag-factory is a library for dynamically generating Apache Airflow DAGs from YAML configuration files.
To install dag-factory run pip install dag-factory
. It requires Python 3.6.0+ and Apache Airflow 1.10+.
After installing dag-factory in your Airflow environment, there are two steps to creating DAGs. First, we need to create a YAML configuration file. For example:
example_dag1:
default_args:
owner: 'example_owner'
start_date: 2018-01-01 # or '2 days'
end_date: 2018-01-05
retries: 1
retry_delay_sec: 300
schedule_interval: '0 3 * * *'
concurrency: 1
max_active_runs: 1
dagrun_timeout_sec: 60
default_view: 'tree' # or 'graph', 'duration', 'gantt', 'landing_times'
orientation: 'LR' # or 'TB', 'RL', 'BT'
description: 'this is an example dag!'
on_success_callback_name: print_hello
on_success_callback_file: /usr/local/airflow/dags/print_hello.py
on_failure_callback_name: print_hello
on_failure_callback_file: /usr/local/airflow/dags/print_hello.py
tasks:
task_1:
operator: airflow.operators.bash_operator.BashOperator
bash_command: 'echo 1'
task_2:
operator: airflow.operators.bash_operator.BashOperator
bash_command: 'echo 2'
dependencies: [task_1]
task_3:
operator: airflow.operators.bash_operator.BashOperator
bash_command: 'echo 3'
dependencies: [task_1]
Then in the DAGs folder in your Airflow environment you need to create a python file like this:
from airflow import DAG
import dagfactory
dag_factory = dagfactory.DagFactory("/path/to/dags/config_file.yml")
dag_factory.clean_dags(globals())
dag_factory.generate_dags(globals())
And this DAG will be generated and ready to run in Airflow!
- Construct DAGs without knowing Python
- Construct DAGs without learning Airflow primitives
- Avoid duplicative code
- Everyone loves YAML! ;)
Contributions are welcome! Just submit a Pull Request or Github Issue.