##LR文本分类器 分别使用Bag of Words和TFIDF作为文本特征,训练逻辑斯蒂回归分类器. ###依赖 需要numpy,scipy,sklearn,jieba分词 ###输入格式 把要训练的文本放入data文件夹,根据训练集和测试集分别放入train和test.每个文件夹放一类文本,文件夹名即为类名.
格式如下.
data
├── test
│ ├── A_宾馆饭店
│ │ ├── bj6_seg_pos.txt
│ │ ├── 三亚市春节宾馆房价不乱涨价违者将受到严处_seg_pos.txt
│ │ └── 住宿-宾馆名录_seg_pos.txt
│ ├── B_城市概况
│ │ ├── bozhou02_seg_pos.txt
│ │ ├── yangzhou01_seg_pos.txt
│ │ └── zhaoqing04_seg_pos.txt
│ ├── C_地方文化
│ .........
│ .........
└── train
├── A_宾馆饭店
│ ├── bj1.txt
│ ├── 魏宝山景区.txt
│ └── 龙 潭 瀑 布.txt
│ .........
│ .........
└── H_休闲娱乐
├── banna01.txt
└── 金牌、银牌表示推荐的娱乐场所。如果想了解娱乐场所的详细信息,请点击娱乐场所名称。.txt
###训练和使用 这里使用的数据是随便找的旅游文本数据,可以换成其它的,文件夹格式参考上面的. ####Bag of Words Bag of Words训练使用demo_bow.py
import os
import numpy as np
from sklearn import linear_model
from TextClassify import BagOfWords,TextClassify
#数据目录
data_dir = 'data'
## BAG OF WORDS MODEL,根据数据建立词袋模型
BOW = BagOfWords(os.path.join(data_dir, 'train'))
##模型可以保存,以后直接读取
#BOW.build_dictionary()
#BOW.save_dictionary(os.path.join(data_dir, 'dicitionary.pkl'))
BOW.load_dictionary(os.path.join(data_dir, 'dicitionary.pkl'))
## LOAD DATA,将训练数据和测试数据转为词袋特征
train_feature, train_target = BOW.transform_data(os.path.join(data_dir, 'train'))
test_feature, test_target = BOW.transform_data(os.path.join(data_dir, 'test'))
## TRAIN LR MODEL,训练逻辑斯蒂模型
logreg = linear_model.LogisticRegression(C=1e5)
logreg.fit(train_feature, train_target)
## PREDICT,在测试集上进行预测
test_predict = logreg.predict(test_feature)
## ACCURACY,测试集上正确率91%
true_false = (test_predict==test_target)
accuracy = np.count_nonzero(true_false)/float(len(test_target))
print "accuracy is %f" % accuracy
## TextClassify,对新文本进行预测,测试文件是test.txt
TextClassifier = TextClassify()
pred = TextClassifier.text_classify('test.txt', BOW, logreg)
print pred[0]
###运行结果
loaded dictionary from data/dicitionary.pkl
done
transforming data in to bag of words vector
done
transforming data in to bag of words vector
done
accuracy is 0.912500
D_购物美食
####TFIDF TFIDF练使用demo_tfidf.py