Disclaimer: Please Note that this is a research project. I am by no means responsible for any usage of this tool. Use on your own behalf. I'm also not responsible if your accounts get banned due to extensive use of this tool.
Automation Script for "farming" Likes, Comments and Followers on Instagram.
Implemented in Python using the Selenium module.
from instapy import InstaPy
InstaPy(username='test', password='test')\
.login()\
.set_do_comment(True, percentage=10)\
.set_comments(['Cool!', 'Awesome!', 'Nice!'])\
.set_dont_include(['friend1', 'friend2', 'friend3'])\
.set_dont_like(['food', 'girl', 'hot'])\
.set_ignore_if_contains(['pizza'])\
.like_by_tags(['dog', '#cat'], amount=100)\
.end()
It's easy to use and the built in delays prevent your account from getting banned. (Just make sure you don't like 1000s of post/day)
Make sure to get the right chromedriver
for your system from here: https://sites.google.com/a/chromium.org/chromedriver/downloads. Just put it in /assets.
cd InstaPy
pip install .
or
cd InstaPy
python setup.py install
If you want the script to get the username and password for your environment, you can do:
export INSTA_USER="<Your username>"
export INSTA_PW="<Your password>"
from instapy import InstaPy
#if you don't provide arguments, the script will look for INSTA_USER and INSTA_PW in the environment
session = InstaPy(username='test', password='test')
session.login()
#likes 100 posts of dogs
session.like_by_tags(['#dog'], amount=100)
session.like_from_image(url='www.instagram.com/image', amount=100)
session.end()
#searches the description for the given words and won't
# like the image if one of the words are in there
session.set_dont_like(['food', 'eat', 'meal'])
#will ignore the don't like if the description contains
# one of the given words
session.set_ignore_if_contains(['glutenfree', 'french', 'tasty'])
#default enabled=False, ~ every 4th image will be commented on
session.set_do_comment(enabled=True, percentage=25)
session.set_comments(['Awesome', 'Really Cool', 'I like your stuff'])
#default enabled=False, follows ~ every 10th user from the images, times=1 (only follows a user once (if unfollowed again))
session.set_do_follow(enabled=True, percentage=10, times=2)
#will prevent commenting on and unfollowing your good friends (the images will still be liked)
session.set_dont_include(['friend1', 'friend2', 'friend3'])
#unfollows 10 of the accounts your following -> instagram will only unfollow 10 before you'll be 'blocked for 10 minutes' (if you enter a higher number than 10 it will unfollow 10, then wait 10 minutes and will continue then)
session.unfollow_users(amount=10)
Note: Head over to https://developer.clarifai.com/signup/ and create a free account, once you're logged in go to https://developer.clarifai.com/account/applications/ and create a new application. You can find the client ID and Secret there. You get 5000 API-calls free/month.
If you want the script to get your Clarifai_ID and Clarifai_Secret for your environment, you can do:
export CLARIFAI_ID="<ProjectID>"
export CLARIFAI_SECRET="<Project Secret>"
from instapy import InstaPy
InstaPy(username='test', password='test')\
.login()\
.set_do_comment(True, percentage=10)\
.set_comments(['Cool!', 'Awesome!', 'Nice!'])\
.set_dont_include(['friend1', 'friend2', 'friend3'])\
.set_dont_like(['food', 'girl', 'hot'])\
.set_ignore_if_contains(['pizza'])\
.set_use_clarifai(enabled=True)\
.clarifai_check_img_for(['nsfw'])\
.clarifai_check_img_for(['food', 'lunch', 'dinner'], comment=True, comments=['Tasty!', 'Nice!', 'Yum!'])\
.like_by_tags(['dog', '#cat'], amount=100)\
.end()
#default enabled=False , enables the checking with the clarifai api (image tagging)
#if secret and proj_id are not set, it will get the environment Variables
# 'Clarifai_SECRET' and 'CLARIFAI_ID'
session.set_use_clarifai(enabled=True, secret='xyz', proj_id='123')
# uses the clarifai api to check if the image contains nsfw content
# -> won't comment if image is nsfw
session.clarifai_check_img_for(['nsfw'])
#checks the image for keywords food and lunch, if found,
#comments with the given comments
session.clarifai_check_img_for(['food', 'lunch'], comment=True, comments=['Tasty!', 'Yum!'])