We propose a Dual Attention Network (DANet) to adaptively integrate local features with their global dependencies based on the self-attention mechanism. And we achieve new state-of-the-art segmentation performance on three challenging scene segmentation datasets, i.e., Cityscapes, PASCAL Context and COCO Stuff-10k dataset.
We train our DANet-101 with only fine annotated data and submit our test results to the official evaluation server.
- Install pytorch
- The code is tested on python3.6 and official Pytorch@commitfd25a2a, please install PyTorch from source.
- The code is modified from PyTorch-Encoding.
-
Clone the repository:
git clone https://github.com/junfu1115/DANet.git cd DANet python setup.py install
-
Dataset
- Download the Cityscapes dataset and convert the dataset to 19 categories.
- Please put dataset in folder
./datasets
4 . Evaluation
-
Download trained model DANet101 and put it in folder
./danet/cityscapes/model
-
Evaluation code is in folder
./danet/cityscapes
-
cd danet
-
For single scale testing, please run:
CUDA_VISIBLE_DEVICES=0 python test.py --dataset cityscapes --model danet --resume-dir cityscapes/model --base-size 2048 --crop-size 768 --workers 1 --backbone resnet101 --multi-grid --multi-dilation 4 8 16 --eval
CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset cityscapes --model danet --resume-dir cityscapes/model --base-size 2048 --crop-size 768 --workers 1 --backbone resnet101 --multi-grid --multi-dilation 4 8 16 --eval
- For multi-scale testing, please run:
CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset cityscapes --model danet --resume-dir cityscapes/model --base-size 2048 --crop-size 1024 --workers 1 --backbone resnet101 --multi-grid --multi-dilation 4 8 16 --eval --multi-scales
- If you want to visualize the result of DAN-101, you can run:
CUDA_VISIBLE_DEVICES=0,1,2,3 python test.py --dataset cityscapes --model danet --resume-dir cityscapes/model --base-size 2048 --crop-size 768 --workers 1 --backbone resnet101 --multi-grid --multi-dilation 4 8 16
-
Evaluation Result:
The expected scores will show as follows:
(single scale testing denotes as 'ss' and multiple scale testing denotes as 'ms')
DANet101 on cityscapes val set (mIoU/pAcc): 79.93/95.97 (ss) and 81.49/96.41 (ms)
-
Training:
- Training code is in folder
./danet/cityscapes
cd danet
You can reproduce our result by run:
CUDA_VISIBLE_DEVICES=0 python train.py --dataset cityscapes --model danet --backbone resnet101 --checkname danet101 --base-size 1024 --crop-size 768 --epochs 240 --batch-size 2 --lr 0.003 --workers 2 --multi-grid --multi-dilation 4 8 16
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --dataset cityscapes --model danet --backbone resnet101 --checkname danet101 --base-size 1024 --crop-size 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 2 --multi-grid --multi-dilation 4 8 16
Note that: We adopt multiple losses in end of the network for better training.
If DANet is useful for your research, please consider citing:
@article{fu2018dual,
title={Dual Attention Network for Scene Segmentation},
author={Fu, Jun and Liu, Jing and Tian, Haijie, and Fang, Zhiwei, and Lu, Hanqing},
journal={arXiv preprint arXiv:1809.02983},
year={2018}
}
Thanks PyTorch-Encoding, especially the Synchronized BN!