Official Pytorch implementation of paper:
AutoLR: Layer-wise Pruning and Auto-tuning of Learning Rates in Fine-tuning of Deep Networks (AAAI 2021).
Python 3.6, Pytorch 0.4.1, Torchvision, tensorboard
Default setting:
- Architecture: ResNet-50
- Dataset: CUB2011 or Cars-196 retrieval
- Batch size: 40
- Image size: 224X224
The dataset path should be changed to your own path.
CUB2011-200 dataset are available on https://drive.google.com/file/d/1hbzc_P1FuxMkcabkgn9ZKinBwW683j45/view
Cars-196 dataset are available on https://ai.stanford.edu/~jkrause/cars/car_dataset.html
prepare_cub.py
The dataset path(data_dir='/home/ro/FG/CUB_200_2011/pytorch') should be changed to your own path.
train_CUB.py --dataset CUB-200 --max_f 0.4 --min_f 2
In the case of Cars-196 retrieval dataset training,
train_CUB.py --dataset Cars-196 --max_f 0.4 --min_f 2
@inproceedings{ro2021autolr,
title={AutoLR: Layer-wise Pruning and Auto-tuning of Learning Rates in Fine-tuning of Deep Networks},
author={Youngmin Ro and Jin Young Choi},
year={2021},
eprint={2002.06048},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Youngmin Ro and Jin Young Choi, "AutoLR: Layer-wise Pruning and Auto-tuning of Learning Rates in Fine-tuning of Deep Networks", CoRR, 2020.