Official Pytorch implementation of paper:
Heterogeneous Double-Head Ensemble for Deep Metric Learning (IEEE Access 2020).
Python 3.6, Pytorch 0.4.1, Torchvision, tensorboard
Default setting:
- Architecture: ResNet-50
- Dataset: CUB2011 (or Cars-196, Inshop, SOP)
- Batch size: 40
- Image size: 224X224
The dataset path should be changed to your own path.
CUB2011-200 dataset are available on https://drive.google.com/file/d/1hbzc_P1FuxMkcabkgn9ZKinBwW683j45/view
Cars-196 dataset are available on https://ai.stanford.edu/~jkrause/cars/car_dataset.html
prepare_cub.py
The dataset path(data_dir='/home/ro/FG/CUB_200_2011/pytorch') should be changed to your own path.
HDhE_train.py --dataset CUB-200
In the case of Cars-196 retrieval dataset training,
HDhE_train.py --dataset Cars-196
Methods | R@1 | R@2 | R@4 | R@8 |
---|---|---|---|---|
CUB-200 | 73.90% | 83.05 | 89.64 | 93.69 |
@ARTICLE{9123761,
author={Y. {Ro} and J. Y. {Choi}},
journal={IEEE Access},
title={Heterogeneous Double-Head Ensemble for Deep Metric Learning},
year={2020},
volume={8},
number={},
pages={118525-118533},
doi={10.1109/ACCESS.2020.3004579}}
Youngmin Ro, Jin Young Choi, "Heterogeneous Double-Head Ensemble for Deep Metric Learning", IEEE Access, 2020.