This repository contains my own edition in the Jupyter notebooks.
Welcome to the public repo for this course.
Below is the list of assignments and ungraded labs course-wise.
At the time we are not accepting Pull Requests but if you have any suggestion or spot any typo please raise an issue.
If you find a bug that is blocking in any way consider joining our community where our mentors and team will help you. You can also find more information on our community in this Reading Item within Coursera.
- Housing Prices (C1W1_Assignment.ipynb)
- Hello World Neural Network (C1_W1_Lab_1_hello_world_nn.ipynb)
- Handwriting Recognition (C1W2_Assignment.ipynb)
- Beyond Hello World, A Computer Vision Example (C1_W2_Lab_1_beyond_hello_world.ipynb)
- Callbacks (C1_W2_Lab_2_callbacks.ipynb)
- Improve MNIST with Convolutions (C1W3_Assignment.ipynb)
- Improving Accuracy with Convolutions (C1_W3_Lab_1_improving_accuracy_using_convolutions.ipynb)
- Exploring Convolutions (C1_W3_Lab_2_exploring_convolutions.ipynb)
- Handling Complex Images (C1W4_Assignment.ipynb)
- Image Generator (C1_W4_Lab_1_image_generator_no_validation.ipynb)
- Image Generator with Validation (C1_W4_Lab_2_image_generator_with_validation.ipynb)
- Compacted Images (C1_W4_Lab_3_compacted_images.ipynb)
- Cats vs. Dogs (C2W1_Assignment.ipynb)
- Using more sophisticated images with Convolutional Neural Networks (C2_W1_Lab_1_cats_vs_dogs.ipynb)
- Cats vs. Dogs using Augmentation (C2W2_Assignment.ipynb)
- Cats vs. Dogs with Augmentation (C2_W2_Lab_1_cats_v_dogs_augmentation.ipynb)
- Horses vs. Humans with Augmentation (C2_W2_Lab_2_horses_v_humans_augmentation.ipynb)
- Horses vs. Humans using Transfer Learning (C2W3_Assignment.ipynb)
- Exploring Transfer Learning (C2_W3_Lab_1_transfer_learning.ipynb)
- Multi-class Classifier (C2W4_Assignment.ipynb)
- Classifying Rock, Paper, and Scissors (C2_W4_Lab_1_multi_class_classifier.ipynb)
- Explore the BBC News Archive (C3W1_Assignment.ipynb)
- Simple Tokenizing (C3_W1_Lab_1_tokenize_basic.ipynb)
- Simple Sequences (C3_W1_Lab_2_sequences_basic.ipynb)
- Sarcasm (C3_W1_Lab_3_sarcasm.ipynb)
- Categorizing the BBC News Archive (C3W2_Assignment.ipynb)
- Positive or Negative IMDB Reviews (C3_W2_Lab_1_imdb.ipynb)
- Sarcasm Classifier (C3_W2_Lab_2_sarcasm_classifier.ipynb)
- IMDB Review Subwords (C3_W2_Lab_3_imdb_subwords.ipynb)
- Exploring Overfitting in NLP (C3W3_Assignment.ipynb)
- IMDB Subwords 8K with Single Layer LSTM (C3_W3_Lab_1_single_layer_LSTM.ipynb)
- IMDB Subwords 8K with Multi Layer LSTM (C3_W3_Lab_2_multiple_layer_LSTM.ipynb)
- IMDB Subwords 8K with 1D Convolutional Layer (C3_W3_Lab_3_Conv1D.ipynb)
- IMDB Reviews with GRU (and optional LSTM and Conv1D) (C3_W3_Lab_4_imdb_reviews_with_GRU_LSTM_Conv1D.ipynb)
- Sarcasm with Bidirectional LSTM (C3_W3_Lab_5_sarcasm_with_bi_LSTM.ipynb)
- Sarcasm with 1D Convolutional Layer (C3_W3_Lab_6_sarcasm_with_1D_convolutional.ipynb)
- Writing Shakespeare with LSTMs (C3W4_Assignment.ipynb)
- NLP with Irish Music (C3_W4_Lab_1.ipynb)
- Generating Poetry from Irish Lyrics (C3_W4_Lab_2_irish_lyrics.ipynb)
- Create and Predict Synthetic Data (C4W1_Assignment.ipynb)
- Time Series (C4_W1_Lab_1_time_series.ipynb)
- Forecasting (C4_W1_Lab_2_forecasting.ipynb)
- Predict with a DNN (C4W2_Assignment.ipynb)
- Preparing Features and Labels (C4_W2_Lab_1_features_and_labels.ipynb)
- Single Layer Neural Network (C4_W2_Lab_2_single_layer_NN.ipynb)
- Deep Neural Network (C4_W2_Lab_3_deep_NN.ipynb)
- Using RNN's and LSTM's for time series (C4W3_Assignment.ipynb)
- Recurrent Neural Network (RNN) (C4_W3_Lab_1_RNN.ipynb)
- Long Short-Term Memory (LSTM) (C4_W3_Lab_2_LSTM.ipynb)
- Daily Minimum Temperatures in Melbourne - Real Life Data (C4W4_Assignment.ipynb)
- Long Short-Term Memory (LSTM) (C4_W4_Lab_1_LSTM.ipynb)
- Sunspots (C4_W4_Lab_2_Sunspots.ipynb)
- Sunspots - DNN Only (C4_W4_Lab_3_DNN_only.ipynb)