For more information, checkout the project site [website] and the paper [PDF].
- Python 3.6
- PyTorch 1.1.0
- Numpy
- Sklearn
These datasets are from an official github of "Future Frame Prediction for Anomaly Detection - A New Baseline (CVPR 2018)".
Download the datasets into dataset
folder, like ./dataset/ped2/
- The training and testing codes are based on prediction method
git clone https://github.com/cvlab-yonsei/projects
cd projects/MNAD/code
python Train.py # for training
- You can freely define parameters with your own settings like
python Train.py --gpus 1 --dataset_path 'your_dataset_directory' --dataset_type avenue --exp_dir 'your_log_directory'
- Download our pre-trained model and memory items
Link: [model and items] - Note that, these are from training with the Ped2 dataset
- Test the model with our pre-trained model and memory items
python Evaluate.py --dataset_type ped2 --model_dir pretrained_model.pth --m_items_dir m_items.pt
- Test your own model
- Check your dataset_type (ped2, avenue or shanghai)
python Evaluate.py --dataset_type ped2 --model_dir your_model.pth --m_items_dir your_m_items.pt
@inproceedings{park2020learning,
title={Learning Memory-guided Normality for Anomaly Detection},
author={Park, Hyunjong and Noh, Jongyoun and Ham, Bumsub},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={14372--14381},
year={2020}
}