/sport_analytics

Sports betting analytics

Primary LanguageJupyter Notebook

Sport Analytics

Simple betting analytics with Python. It has two parts which are data-preprocessing(code/preprocess.ipynb) and exploratory data analysis(code/eda.ipynb).

Article - 1: https://medium.com/analytics-vidhya/sports-analytics-in-python-part-1-12e4907da227
Article - 2: https://medium.com/analytics-vidhya/exploratory-data-analysis-in-sports-analytics-part-2-5ba6aa50cd5

Bet Options

The list below contains the most popular type of bets on football.

1 2 3 4 5 6 7 8
0.5_under_half 0.5_above_half mutual_goal MS_2_under_2_5 MS_1_above_3_5 MS_0_above_4_5 away_goal_concede win_half_full
1.5_under_half 1.5_above_half MS_1_under_1_5 MS_0_under_2_5 MS_2_above_3_5 win sum_concede win_half_full_home
2.5_under_half 2.5_above_half MS_2_under_1_5 MS_1_above_2_5 MS_0_above_3_5 draw win_half win_half_full_away
0.5_under_final 0.5_above_final MS_0_under_1_5 MS_2_above_2_5 MS_1_under_4_5 lose draw_half -
1.5_under_final 1.5_above_final MS_1_above_1_5 MS_0_above_2_5 MS_2_under_4_5 home_goal lose_half -
2.5_under_final 2.5_above_final MS_2_above_1_5 MS_1_under_3_5 MS_0_under_4_5 away_goal one_zero -
3.5_under_final 3.5_above_final MS_0_above_1_5 MS_2_under_3_5 MS_1_above_4_5 sum_goal one_two -
4.5_under_final 4.5_above_final MS_1_under_2_5 MS_0_under_3_5 MS_2_above_4_5 home_goal_concede zero_two -

Installation

Use the package manager pip to install foobar.

pip install ipywidgets
pip install nbextensions
pip install plotly


Usage

When you run the code, you will see the sample dashboard like this. Algorithm schema