/SlimFlow

[ECCV2024] "SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow", Yuanzhi Zhu, Xingchao Liu, Qiang Liu

Primary LanguagePython

SlimFlow

This is the official implementation of ECCV2024 paper

by Yuanzhi Zhu, Xingcaho Liu, Qiang Liu

This code is based on RectifiedFlow.

usage

Train 1-Rectified Flow

python ./train.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --config.expr 1_rectified_flow \

Evaluation

evaluate FID of ckpts from config.eval.begin_ckpt in ckpt_dir

one step

python ./evaluation_fid.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --ckpt_dir logs/1_rectified_flow \
    --config.eval.batch_size 512 --config.eval.num_samples 50000 \
    --config.eval.begin_ckpt 1 --config.eval.end_ckpt 0 \
    --config.sampling.sample_N 1 --config.sampling.use_ode_sampler euler \

rk45 by default

python ./evaluation_fid.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --ckpt_dir logs/1_rectified_flow \
    --config.eval.batch_size 512 --config.eval.num_samples 50000 \
    --config.eval.begin_ckpt 1 --config.eval.end_ckpt 0 \

Image Sampling

sampling all ckpts in sampling_dir

python ./image_sampling.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py \
    --sampling_dir "logs/1_rectified_flow" \
    --config.eval.batch_size 64

Generate Data Pair

z0-->z1 by default

python ./generate_data.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --ckpt_path "logs/1_rectified_flow/checkpoints/checkpoint_14.pth" \
    --data_root "reflow_data/1_rectified_flow_50000/" \
    --config.sampling.total_number_of_samples 50000 --config.seed 0 \
    --config.training.batch_size 512 \
    --config.sampling.direction from_z0 \

config.sampling.direction has 3 options: 'from_z0', 'from_z1', 'random_paired'

Reflow to get 2-Rectified Flow with the Generated Data Pair

python ./train.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --config.data.reflow_data_root "reflow_data/1_rectified_flow_50000/" \
    --config.flow.flow_t_schedule uniform \
    --config.expr 2_rectified_flow \
    --config.flow.h_flip=true \
    --config.flow.pre_train_model /logs/1_rectified_flow/checkpoints/checkpoint_14.pth \

Annealing Reflow

python ./train.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --config.expr 2_rectified_flow_500001flow_flip_warmup_300000_28m \
    --config.flow.h_flip=true \
    --config.training.x0_randomness warmup_300000 \
    --config.training.snapshot_freq 50000 \
    --config.training.snapshot_sampling 10000 \
    --config.data.reflow_data_root "reflow_data/1_rectified_flow_50000/" \
    --config.model.nf 128 --config.model.num_res_blocks 2 \
    --config.model.ch_mult '(1, 2, 2)' \

must specify config.data.data_root for reflow training

if config.flow.pre_train_model is not specified, the model will be trained from scratch.

Distill to get one-step model

python ./train.py \
    --config ./configs/rectified_flow/cifar10_rf_gaussian.py  \
    --config.data.reflow_data_root "reflow_data/1_rectified_flow_50000/" \
    --config.flow.flow_t_schedule t0 \
    --config.training.loss_type lpips \
    --config.flow.use_teacher true \
    --config.expr 2_rectified_flow_500000bigflow_28m_distill_lpips_use_teacher \
    --config.flow.pre_train_model "./logs/2_rectified_flow_500001flow_flip_warmup_300000_28m/checkpoints/checkpoint_16.pth" \
    --config.model.nf 128 --config.model.num_res_blocks 2 \
    --config.model.ch_mult '(1, 2, 2)' \

Citation

If you find this repo helpful, please cite:

@article{zhu2024slimflow,
  title={SlimFlow: Training Smaller One-Step Diffusion Models with Rectified Flow},
  author={Zhu, Yuanzhi and Liu, Xingchao and Liu, Qiang},
  journal={arXiv preprint arXiv:2407.12718},
  year={2024}
}