/SSR

structured sparsity regularization

Primary LanguagePython

SSR

structured sparsity regularization

we propose a novel filter pruning scheme, termed structured sparsity regularization (SSR), to simultaneously speedup the computation and reduce the memory overhead of CNN, which can be well supported by various off-the-shelf deep learning libraries.

Citation

If you find our project useful in your research, please consider citing:

@article{lin2019towards,
  title={Towards Compact ConvNets via Structure-Sparsity Regularized Filter Pruning},
  author={Lin, Shaohui and Ji, Rongrong and Li, Yuchao and Deng, Cheng and Li, Xuelong},
  journal={arXiv preprint arXiv:1901.07827},
  year={2019}
}

Running

1. download dataset (mnist)

python dataset/download_and_convert_mnist.py 

2. training and testing

./run.sh

Experimental results

Method #Filter/Node FLOPs #Param. CPU(ms) Speedup Top-1 Err.↑
LeNet 20-50-500 2.3M 0.43M 26.4 0%
SSL[23] 3-15-175 162K 45K 7.3 3.62× 0.05%
SSL[23] 2-11-134 91K 26K 6.0 4.40× 0.20%
TE[42] 2-12-127 95K 27K 5.7 4.62× 0.02%
TE[42] 2-7-99 65K 13K 5.5 4.80× 0.20%
CGES[57] - 332K 156K - - 0.01%
CGES+[57] - - 43K - - 0.04%
GSS[43] 3-11-109 119K 21K 6.7 3.94× 0.08%
GSS[43] 3-8-82 95K 12K 5.6 4.71× 0.20%
SSR-L2,1 3-11-108 118K 21K 6.6 4.00× 0.05%
SSR-L2,1 2-8-77 67K 11K 4.8 5.50× 0.18%

Note

[23] W. Wen, C. Wu, Y. Wang, et al. Learning structured sparsity in deep neural networks. In NIPS, 2016.

[42] P. Molchanov, S. Tyree, T. Karras, et al. Pruning convolutional neural networks for resource efficient inference. In ICLR, 2017.

[43] A. Torfi and R. A. Shirvani. Attention-based guided structured sparsity of deep neural networks. arXiv preprint arXiv:1802.09902, 2018.

[57] J. Yoon and S. J. Hwang. Combined group and exclusive sparsity for deep neural networks. In ICML, 2017.