Progress bar for deep learning training iterations.
from barbar import Bar
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
mnist_train = datasets.MNIST(root=root,
download=True,
train=True)
train_dataloader = DataLoader(mnist_train,
batch_size=100,
shuffle=True)
model = MLP().to(device)
for epoch in range(epochs):
print('Epoch: {}'.format(epoch+1))
for idx, (x, t) in enumerate(Bar(train_dataloader)):
x, t = x.to(device), t.to(device)
loss, preds = train_step(x, t)
Epoch: 1
60000/60000: [===============================>] - ETA 0.0s
Epoch: 2
28100/60000: [==============>.................] - ETA 4.1s
Barbar works best with PyTorch DataLoader, but it also works with custom DataLoader. Minimal DataLoader example can be written as follows:
class CustomDataLoader(object):
def __init__(self, dataset,
batch_size=100,
shuffle=False,
random_state=None):
self.dataset = list(zip(dataset[0], dataset[1]))
self.batch_size = batch_size
self.shuffle = shuffle
if random_state is None:
random_state = np.random.RandomState(1234)
self.random_state = random_state
self._idx = 0
self._reset()
def __len__(self):
N = len(self.dataset)
b = self.batch_size
return N // b + bool(N % b)
def __iter__(self):
return self
def __next__(self):
if self._idx >= len(self.dataset):
self._reset()
raise StopIteration()
x, y = \
zip(*self.dataset[self._idx:(self._idx + self.batch_size)])
# x = torch.Tensor(x)
# y = torch.LongTensor(y)
self._idx += self.batch_size
return x, y
def _reset(self):
if self.shuffle:
self.dataset = shuffle(self.dataset,
random_state=self.random_state)
self._idx = 0
mnist = datasets.fetch_openml('mnist_784', version=1,)
x, y = mnist.data.astype(np.float32), mnist.target.astype(np.int32)
x = x / 255.
x_train = x[:60000]
y_train = y[:60000]
train_dataloader = CustomDataLoader((x_train, y_train),
batch_size=100,
shuffle=True)
- Install Barbar from PyPI (recommended):
pip install barbar
- Alternatively: install Barbar from the GitHub source:
First, clone Barbar using git
:
git clone https://github.com/yusugomori/barbar.git
Then, cd
to the Barbar folder and run the install command:
cd barbar
sudo python setup.py install