/deep-casa

Tensorflow implementation of deep CASA

Primary LanguagePython

Deep CASA for talker-independent monaural speaker separation

Introduction

This is the Tensorflow implementation of:

Please find demos and keynote lecture slides at ASRU-19 here.

Contents

  • ./feat/exp_prepare_folder.sh: prepares folders for experiments.
  • ./feat/feat_gen.py: generates STFT featuers for training, validation and test.
  • ./feat/stft.py: defines STFT and iSTFT.
  • ./nn/simul_group.py: training/validation/test of the simultaneous grouping stage for non-causal deep CASA [1].
  • ./nn/seq_group.py: training/validation/test of the sequential grouping stage for non-causal deep CASA [1].
  • ./nn/simul_group_causal.py: training/validation/test of the simultaneous grouping stage for causal deep CASA [2].
  • ./nn/seq_group_causal.py: training/validation/test of the sequential grouping stage for causal deep CASA [2].
  • ./nn/utility.py: defines various functions for training/evaluation.

Experimental setup

This codebase has been tested on AWS EC2 p3.2xlarge nodes with Deep Learning AMI (Ubuntu 18.04) Version 38.0.

Follow instructions in turn to set up the environment and run experiments.

  1. Requirements:

    • Python3
    • Tensorflow 1.15.4.
      Activate the environment on EC2 :
      source activate tensorflow_p37
      
    • gflags
      pip install python-gflags
      
    • Please install other necessary python packages if not using AWS deep Learning AMI (Ubuntu 18.04) Version 38.0.
  2. Before running experiments, activate the tensorflow environment on EC2 using:

    source activate tensorflow_p37
    

    The current code only supports single-GPU training/inference, please run the following command if your device has multiple GPUs:

    export CUDA_VISIBLE_DEVICES=0
    
  3. Generate the WSJ0-2mix dataset using http://www.merl.com/demos/deep-clustering/create-speaker-mixtures.zip. Copy the generated files to the EC2 instance.

  4. Start feature extraction by running the following command in the main directory:

    python feat/feat_gen.py
    

    Thre are two arguments in feat_gen.py, data_folder and wav_list_folder. Change them to where your WSJ0-2mix dataset and file list locate.

  5. Train the simultaneous grouping stage.
    For non-causal deep CASA:

    TIME_STAMP=train_simul_group
    python nn/simul_group.py --time_stamp $TIME_STAMP --is_deploy 0 --batch_size 1 
    
    • Due to utterance-level training and limited GPU memory, batch_size can be set to 1 or 2.
    • Change data_folder and wav_list_folder accordingly.
    • You can also change other hyperparameters, e.g., the number of epochs and learning rate, using gflags arguments.

    For causal deep CASA:

    TIME_STAMP=train_simul_group_causal
    python nn/simul_group_causal.py --time_stamp $TIME_STAMP --is_deploy 0 --batch_size 4
    
    • Segment-level training is adopted. batch_size can be set to 4.
  6. Run inference of simultaneous grouping (tt set).
    For non-causal deep CASA:

    RESUME_MODEL=exp/deep_casa_wsj/models/train_simul_group/deep_casa_wsj_model.ckpt_step_1
    python nn/simul_group.py --is_deploy 1 --resume_model $RESUME_MODEL
    
    • $RESUME_MODEL is the model to be loaded for inference. Change it accordingly.
    • Mixtures, clean references and Dense-UNet estimates will be generated and saved in folder ./exp/deep_casa_wsj/output_tt/files/.
    • Please use your own scripts to generate results in different metrics.

    For causal deep CASA:

    RESUME_MODEL=exp/deep_casa_wsj/models/train_simul_group_causal/deep_casa_wsj_model.ckpt_step_1
    python nn/simul_group_causal.py --is_deploy 1 --resume_model $RESUME_MODEL
    
    • $RESUME_MODEL is the model to be loaded for inference. Change it accordingly.
  7. Generate temporary .npy file for the next stage (sequential grouping).
    For non-causal deep CASA:

    RESUME_MODEL=exp/deep_casa_wsj/models/train_simul_group/deep_casa_wsj_model.ckpt_step_1
    python nn/simul_group.py --is_deploy 2 --resume_model $RESUME_MODEL
    
    • Setting is_deploy to 2 will generate unorganized estimates by Dense-UNet, and save them as .npy files for the sequential grouping stage.
    • tr, cv and tt data are generated in turn, and saved in ./exp/deep_casa_wsj/feat/.

    For causal deep CASA:

    RESUME_MODEL=exp/deep_casa_wsj/models/train_simul_group_causal/deep_casa_wsj_model.ckpt_step_1
    python nn/simul_group_causal.py --is_deploy 2 --resume_model $RESUME_MODEL
    
  8. Train the sequential grouping stage.
    For non-causal deep CASA:

    TIME_STAMP=train_seq_group
    python nn/seq_group.py --time_stamp $TIME_STAMP --is_deploy 0
    

    Change data_folder and wav_list_folder accordingly. You can also change other hyperparameters, e.g., the number of epochs and learning rate, using gflags arguments.

    For causal deep CASA:

    TIME_STAMP=train_seq_group_causal
    python nn/seq_group_causal.py --time_stamp $TIME_STAMP --is_deploy 0
    
  9. Run inference of sequential grouping (tt set).
    For non-causal deep CASA:

    RESUME_MODEL=exp/deep_casa_wsj/models/train_seq_group/deep_casa_wsj_model.ckpt_step_1
    python nn/seq_group.py --is_deploy 1 --resume_model $RESUME_MODEL
    
    • $RESUME_MODEL is the model to be loaded for inference. Change it accordingly.
    • Mixtures, clean references and estimates will be saved in folder ./exp/deep_casa_wsj/output_tt/files/.
    • Please use your own scripts to generate results in different metrics.

    For causal deep CASA:

    RESUME_MODEL=exp/deep_casa_wsj/models/train_seq_group_causal/deep_casa_wsj_model.ckpt_step_1
    python nn/seq_group_causal.py --is_deploy 1 --resume_model $RESUME_MODEL
    
    • $RESUME_MODEL is the model to be loaded for inference. Change it accordingly.