/MMSSL

[WWW'2023] "Multi-Modal Self-Supervised Learning for Recommendation"

Primary LanguagePython

MMSSL: Multi-Modal Self-Supervised Learning for Recommendation

PyTorch implementation for WWW 2023 paper Multi-Modal Self-Supervised Learning for Recommendation.

MMSSL

MMSSL is a new multimedia recommender system MMSSL which integrates the generative modality-aware collaborative self-augmentation and the contrastive cross-modality dependency encoding. It achieves better performance than existing SOTA multi-model recommenders.

Dependencies

Usage

Start training and inference as:

cd MMSSL
python main.py --dataset {DATASET}

Supported datasets: Amazon-Baby, Amazon-Sports, Tiktok, Allrecipes

Datasets

├─ MMSSL/ 
    ├── data/
      ├── tiktok/
      ...
Dataset Amazon Tiktok Allrecipes
Modality V T V T V A T V T
Embed Dim 4096 1024 4096 1024 128 128 768 2048 20
User 35598 19445 9319 19805
Item 18357 7050 6710 10067
Interactions 256308 139110 59541 58922
Sparsity 99.961% 99.899% 99.904% 99.970%
  • 2023.3.23 update(all datasets uploaded): We provide the processed data at Google Drive.
  • 2023.3.24 update: The official website of the Tiktok dataset has been closed. Thus, we also provide many other versions of preprocessed Tiktok. We spent a lot of time pre-processing this dataset, so if you want to use our preprocessed Tiktok in your work please cite.
# part of data preprocessing
# #----json2mat--------------------------------------------------------------------------------------------------
import json
from scipy.sparse import csr_matrix
import pickle
import numpy as np
n_user, n_item = 39387, 23033
f = open('/home/weiw/Code/MM/MMSSL/data/clothing/train.json', 'r')  
train = json.load(f)
row, col = [], []
for index, value in enumerate(train.keys()):
    for i in range(len(train[value])):
        row.append(int(value))
        col.append(train[value][i])
data = np.ones(len(row))
train_mat = csr_matrix((data, (row, col)), shape=(n_user, n_item))
pickle.dump(train_mat, open('./train_mat', 'wb'))  
# # ----json2mat--------------------------------------------------------------------------------------------------


# ----mat2json--------------------------------------------------------------------------------------------------
# train_mat = pickle.load(open('./train_mat', 'rb'))
test_mat = pickle.load(open('./test_mat', 'rb'))
# val_mat = pickle.load(open('./val_mat', 'rb'))

# total_mat = train_mat + test_mat + val_mat
total_mat =test_mat

# total_mat = pickle.load(open('./new_mat','rb'))
# total_mat = pickle.load(open('./new_mat','rb'))
total_array = total_mat.toarray()
total_dict = {}

for i in range(total_array.shape[0]):
    total_dict[str(i)] = [index for index, value in enumerate(total_array[i]) if value!=0]

new_total_dict = {}

for i in range(len(total_dict)):
    # if len(total_dict[str(i)])>1:
    new_total_dict[str(i)]=total_dict[str(i)]

# train_dict, test_dict = {}, {}

# for i in range(len(new_total_dict)):
#     train_dict[str(i)] = total_dict[str(i)][:-1]
#     test_dict[str(i)] = [total_dict[str(i)][-1]]

# train_json_str = json.dumps(train_dict)
test_json_str = json.dumps(new_total_dict)

# with open('./new_train.json', 'w') as json_file:
# # with open('./new_train_json', 'w') as json_file:
#     json_file.write(train_json_str)
with open('./test.json', 'w') as test_file:
# with open('./new_test_json', 'w') as test_file:
    test_file.write(test_json_str)
# ----mat2json--------------------------------------------------------------------------------------------------

Experimental Results

Performance comparison of baselines on different datasets in terms of Recall@20, Precision@20 and NDCG@20:

Baseline Tiktok Amazon-Baby Amazon-Sports Allrecipes
R@20 P@20 N@20 R@20 P@20 N@20 R@20 P@20 N@20 R@20 P@20 N@20
MF-BPR 0.0346 0.0017 0.0130 0.0440 0.0024 0.0200 0.0430 0.0023 0.0202 0.0137 0.0007 0.0053
NGCF 0.0604 0.0030 0.0238 0.0591 0.0032 0.0261 0.0695 0.0037 0.0318 0.0165 0.0008 0.0059
LightGCN 0.0653 0.0033 0.0282 0.0698 0.0037 0.0319 0.0782 0.0042 0.0369 0.0212 0.0010 0.0076
SGL 0.0603 0.0030 0.0238 0.0678 0.0036 0.0296 0.0779 0.0041 0.0361 0.0191 0.0010 0.0069
NCL 0.0658 0.0034 0.0269 0.0703 0.0038 0.0311 0.0765 0.0040 0.0349 0.0224 0.0010 0.0077
HCCF 0.0662 0.0029 0.0267 0.0705 0.0037 0.0308 0.0779 0.0041 0.0361 0.0225 0.0011 0.0082
VBPR 0.0380 0.0018 0.0134 0.0486 0.0026 0.0213 0.0582 0.0031 0.0265 0.0159 0.0008 0.0056
LightGCN-$M$ 0.0679 0.0034 0.0273 0.0726 0.0038 0.0329 0.0705 0.0035 0.0324 0.0235 0.0011 0.0081
MMGCN 0.0730 0.0036 0.0307 0.0640 0.0032 0.0284 0.0638 0.0034 0.0279 0.0261 0.0013 0.0101
GRCN 0.0804 0.0036 0.0350 0.0754 0.0040 0.0336 0.0833 0.0044 0.0377 0.0299 0.0015 0.0110
LATTICE 0.0843 0.0042 0.0367 0.0829 0.0044 0.0368 0.0915 0.0048 0.0424 0.0268 0.0014 0.0103
CLCRec 0.0621 0.0032 0.0264 0.0610 0.0032 0.0284 0.0651 0.0035 0.0301 0.0231 0.0010 0.0093
MMGCL 0.0799 0.0037 0.0326 0.0758 0.0041 0.0331 0.0875 0.0046 0.0409 0.0272 0.0014 0.0102
SLMRec 0.0845 0.0042 0.0353 0.0765 0.0043 0.0325 0.0829 0.0043 0.0376 0.0317 0.0016 0.0118
MMSSL 0.0921 0.0046 0.0392 0.0962 0.0051 0.0422 0.0998 0.0052 0.0470 0.0367 0.0018 0.0135
p-value 1.28e-5 7.12e-6 6.55e-6 2.23e-6 7.69e-6 8.65e-7 7.75e-6 6.48e-6 6.78e-7 3.94e-4 5.06e-6 4.31e-5
Improv. 8.99% 9.52% 6.81% 16.04% 15.91% 14.67% 9.07% 8.33% 10.85% 15.77% 12.50% 14.40%

Citing

If you find this work is helpful to your research, please kindely consider cite our paper:

@article{wei2023multi,
  title={Multi-Modal Self-Supervised Learning for Recommendation},
  author={Wei, Wei and Huang, Chao and Xia, Lianghao and Zhang, Chuxu},
  journal={arXiv preprint arXiv:2302.10632},
  year={2023}
}

Acknowledgement

The structure of this code is largely based on LATTICE. Thank for their work.