这是一个用 RC 小车、树莓派、Arduino和开源软件实现的小规模的自动驾驶项目。 系统使用了Raspberry Pi带着一个摄像头和一个用来测距的超声传感器,一个主机操作驾驶方向,物体识别(这里识别的是停止标志和红绿灯)、目标物测距,一个Arduino board用来控制小车
- Raspberry Pi:
- Picamera
- Computer:
- Numpy
- OpenCV 2.4.10.1
- Pygame
- PiSerial
- raspberrt_pi
- stream_client.py:以jpeg格式将视频帧流式传输到主机
- ultrasonic_client.py:将由传感器测量的距离数据发送到主机
- Arduino
- rc_keyboard_control.ino:作为rc控制器和计算机之间的接口,允许用户通过USB串行接口发送命令
- 电脑
- cascade_xml 训练级联分类器xml文件
- 棋盘 用于校准的图像,由pi相机捕获
- training_data 以npz格式训练神经网络的图像数据
- testing_data 以npz格式测试神经网络的图像数据
- training_images 在图像训练数据采集阶段保存视频帧(可选)
- mlp_xml 在xml文件中训练神经网络参数
- rc_control_test.py:带键盘的驱动RC车(测试目的)
- picam_calibration.py:pi相机校准,返回相机矩阵
- collect_training_data.py:接收流式视频帧和标签框以供后续培训
- mlp_training.py:神经网络训练
- mlp_predict_test.py:用测试数据测试训练有素的神经网络
- rc_driver.py:多线程服务器程序接收视频帧和传感器数据,并允许RC车载驱动器本身具有停车标志,交通灯检测和前碰撞避免能力
-
Flash Arduino:Flash “rc_keyboard_control.ino”到Arduino并运行“rc_control_test.py”来驱动rc车用键盘(测试目的)
-
Pi相机校准:使用pi相机以各种角度拍摄多张棋盘图像,并将其放入“chess_board”文件夹中,运行“picam_calibration.py”,并返回相机矩阵,这些参数将用于“rc_driver.py”
-
收集培训数据和测试数据:首先运行“collect_training_data.py”,然后在raspberry pi上运行“stream_client.py”。用户按键盘驱动RC车,只有当有按键动作时才保存框架。完成驾驶后,按“q”退出,数据保存为npz文件。
-
神经网络训练:运行“mlp_training.py”,取决于所选择的参数,需要一些时间训练。培训后,参数保存在“mlp_xml”文件夹中
-
神经网络测试:运行“mlp_predict_test.py”从“test_data”文件夹加载测试数据,并从“mlp_xml”文件夹中的xml文件中训练参数
-
级联分类器训练(可选):训练有素的停车标志和交通灯分类器包含在“cascade_xml”文件夹中,如果您有兴趣培训您自己的分类器,请参考OpenCV文档和Thorsten Ball
-
自驾驾驶:首先运行“rc_driver.py”在计算机上启动服务器,然后在raspberry pi上运行“stream_client.py”和“ultrasonic_client.py”。
原项目是适用于python 2.7 本项目改成适用于 python3
test 文件夹下讲解不丰富,待改进
See self-driving in action
A scaled down version of self-driving system using a RC car, Raspberry Pi, Arduino and open source software. The system uses a Raspberry Pi with a camera and an ultrasonic sensor as inputs, a processing computer that handles steering, object recognition (stop sign and traffic light) and distance measurement, and an Arduino board for RC car control.
- Raspberry Pi:
- Picamera
- Computer:
- Numpy
- OpenCV 2.4.10.1
- Pygame
- PiSerial
- raspberrt_pi/
- stream_client.py: stream video frames in jpeg format to the host computer
- ultrasonic_client.py: send distance data measured by sensor to the host computer
- arduino/
- rc_keyboard_control.ino: acts as a interface between rc controller and computer and allows user to send command via USB serial interface
- computer/
- cascade_xml/
- trained cascade classifiers xml files
- chess_board/
- images for calibration, captured by pi camera
- training_data/
- training data for neural network in npz format
- training_images/
- saved video frames during image training data collection stage (optional)
- mlp_xml/
- trained neural network parameters in a xml file
- picam_calibration.py: pi camera calibration, returns camera matrix
- collect_training_data.py: receive streamed video frames and label frames for later training
- mlp_training.py: neural network training
- rc_driver.py: a multithread server program receives video frames and sensor data, and allows RC car drives by itself with stop sign, traffic light detection and front collision avoidance capabilities
- cascade_xml/
- test/
- rc_control_test.py: RC car control with keyboard
- stream_server_test.py: video streaming from Pi to computer
- ultrasonic_server_test.py: sensor data streaming from Pi to computer
- Traffic_signal/
- trafic signal sketch contributed by @geek111
-
Flash Arduino: Flash “rc_keyboard_control.ino” to Arduino and run “rc_control_test.py” to drive the rc car with keyboard (testing purpose)
-
Pi Camera calibration: Take multiple chess board images using pi camera at various angles and put them into “chess_board” folder, run “picam_calibration.py” and it returns the camera matrix, those parameters will be used in “rc_driver.py”
-
Collect training data and testing data: First run “collect_training_data.py” and then run “stream_client.py” on raspberry pi. User presses keyboard to drive the RC car, frames are saved only when there is a key press action. When finished driving, press “q” to exit, data is saved as a npz file.
-
Neural network training: Run “mlp_training.py”, depend on the parameters chosen, it will take some time to train. After training, model will be saved in “mlp_xml” folder
-
Cascade classifiers training (optional): trained stop sign and traffic light classifiers are included in the "cascade_xml" folder, if you are interested in training your own classifiers, please refer to OpenCV documentation and this great tutorial by Thorsten Ball
-
Self-driving in action: First run “rc_driver.py” to start the server on the computer and then run “stream_client.py” and “ultrasonic_client.py” on raspberry pi.