Pedestron is a MMdetection based repository that focuses on the advancement of research on pedestrian detection. We provide a list of detectors, both general purpose and pedestrian specific to train and test. Moreover, we provide pre-trained models and benchmarking of several detectors on different pedestrian detection datasets. Additionally, we provide processed annotations and scripts to process the annotation of different pedestrian detection benchmarks. If you use Pedestron, please cite us (see at the end) and other respective sources.
- [NEW] Ported testing of Mask-Guided Attention Network for Occluded Pedestrian Detection (MGAN). (ICCV'19), into Pedestron along with pretrained model
- [NEW] Pedestron now supports general person and pedestrian detection in crowded scenarios. Pre-trained model along with evaluation script on CrowdHuman benchmark is added
- [NEW] Pre-trained model for WIDER pedestrian datasets has been added to the Pedestron, for general person detection
- 🔥 Configuration along with a pre-trained model for RetinaNet with Gudied Anchoring added. Its fast and accurate
- 🔥 Configuration along with a pre-trained model for Faster R-CNN with HRNet for EuroCity Persons has been adeed
- 🔥 Google Colab step-by-step instruction on how to setup Pedestron and run demo by Gokulan Vikash
- Caltech and EuroCity Persons. Pre-Trained model available.
We refer to the installation and list of dependencies to installation file. Clone this repo and follow installation. Alternatively, Google Colab step by step instruction can be followed for installation
Currently we provide configurations for the following detectors, with different backbones
- Cascade Mask-R-CNN
- Faster R-CNN
- RetinaNet
- RetinaNet with Guided Anchoring
- Hybrid Task Cascade (HTC)
- MGAN
- We refer to Datasets preparation file for detailed instructions
Detector | Dataset | Backbone | Reasonable | Heavy |
---|---|---|---|---|
Cascade Mask R-CNN | CityPersons | HRNet | 7.5 | 28.0 |
Cascade Mask R-CNN | CityPersons | MobileNet | 10.2 | 37.3 |
Faster R-CNN | CityPersons | HRNet | 10.2 | 36.2 |
RetinaNet | CityPersons | ResNeXt | 14.6 | 39.5 |
RetinaNet with Guided Anchoring | CityPersons | ResNeXt | 11.7 | 41.5 |
Hybrid Task Cascade (HTC) | CityPersons | ResNeXt | 9.5 | 35.8 |
MGAN | CityPersons | VGG | 11.2 | 52.5 |
Cascade Mask R-CNN | Caltech | HRNet | 1.7 | 25.7 |
Cascade Mask R-CNN | EuroCity Persons | HRNet | 4.4 | 21.3 |
Faster R-CNN | EuroCity Persons | HRNet | 6.1 | 27.0 |
Detector | Dataset | Backbone | AP |
---|---|---|---|
Cascade Mask R-CNN | CrowdHuman | HRNet | 84.1 |
Cascade Mask R-CNN
Faster R-CNN
RetinaNet
RetinaNet with Guided Anchoring
Hybrid Task Cascade (HTC)
MGAN
- Pre-trained model can be evaluated on sample images in the following way
python tools/demo.py config checkpoint input_dir output_dir
Download one of our provided pre-trained model and place it in models_pretrained folder. Demo can be run using the following command
python tools/demo.py configs/elephant/cityperson/cascade_hrnet.py ./models_pretrained/epoch_5.pth.stu demo/ result_demo/
See Google Colab demo.
- single GPU training
- multiple GPU training
Train with single GPU
python tools/train.py ${CONFIG_FILE}
Train with multiple GPUs
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
For instance training on CityPersons using single GPU
python tools/train.py configs/elephant/cityperson/cascade_hrnet.py
Training on CityPersons using multiple(7 in this case) GPUs
./tools/dist_train.sh configs/elephant/cityperson/cascade_hrnet.py 7
- single GPU testing
- multiple GPU testing
Test can be run using the following command.
python ./tools/TEST_SCRIPT_TO_RUN.py PATH_TO_CONFIG_FILE ./models_pretrained/epoch_ start end\
--out Output_filename --mean_teacher
For example for CityPersons inference can be done the following way
- Download the pretrained CityPersons model and place it in the folder "models_pretrained/".
- Run the following command:
python ./tools/test_city_person.py configs/elephant/cityperson/cascade_hrnet.py ./models_pretrained/epoch_ 5 6\
--out result_citypersons.json --mean_teacher
Alternatively, for EuroCity Persons
python ./tools/test_euroCity.py configs/elephant/eurocity/cascade_hrnet.py ./models_pretrained/epoch_ 147 148 --mean_teacher
or without mean_teacher flag for MGAN
python ./tools/test_city_person.py configs/elephant/cityperson/mgan_vgg.py ./models_pretrained/epoch_ 1 2\
--out result_citypersons.json
Testing with multiple GPUs on CrowdHuman
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
./tools/dist_test.sh configs/elephant/crowdhuman/cascade_hrnet.py ./models_pretrained/epoch_19.pth.stu 8 --out CrowdHuman12.pkl --eval bbox
- Similarly change respective paths for EuroCity Persons
- For Caltech refer to Datasets preparation file
@article{hasan2020pedestrian,
title={Pedestrian Detection: The Elephant In The Room},
author={Hasan, Irtiza and Liao, Shengcai and Li, Jinpeng and Akram, Saad Ullah and Shao, Ling},
journal={arXiv preprint arXiv:2003.08799},
year={2020}
}