/ReCU

Pytorch implementation of our paper accepted by ICCV 2021 -- ReCU: Reviving the Dead Weights in Binary Neural Networks http://arxiv.org/abs/2103.12369

Primary LanguagePython

ReCU: Reviving the Dead Weights in Binary Neural Networks (Paper Link) .

Pytorch implementation of ReCU in ICCV 2021.

Tips

Any problem, please contact the first author (Email: ianhsu@stu.xmu.edu.cn).

Dependencies

  • Python 3.7
  • Pytorch 1.1.0

Citation

If you find ReCU useful in your research, please consider citing:

@inproceedings{xu2021recu,
  title={ReCU: Reviving the Dead Weights in Binary Neural Networks},
  author={Xu, Zihan and Lin, Mingbao and Liu, Jianzhuang and Chen, Jie and Shao, Ling and Gao, Yue and Tian, Yonghong and Ji, Rongrong},
  booktitle={Proceedings of the International Conference on Computer Vision (ICCV)},
  pages={5198--5208},
  year={2021}
}

Training on CIFAR-10

python -u main.py \
--gpus 0 \
--model resnet18_1w1a (or resnet20_1w1a or vgg_small_1w1a) \
--results_dir ./result \
--data_path [DATA_PATH] \
--dataset cifar10 \
--epochs 600 \
--lr 0.1 \
-b 256 \
-bt 128 \
--lr_type cos \
--warm_up \
--weight_decay 5e-4 \
--tau_min 0.85 \
--tau_max 0.99 \

Optional arguments

optinal arguments:
    --gpus                    Specify gpus, e.g., 0, 1  
    --seed                    Fix random seeds (Code efficiency will be slightly affected)
                              set to 0 to disable
                              default: 0
    --model / -a              Choose model   
                              default: resnet18_1w1a   
                              options: resnet20_1w1a / vgg_small_1w1a       
    --results_dir             Path to save directory  
    --save                    Path to save folder    
    --data_path               Path to dataset    
    --evaluate / -e           Evaluate  
    --dataset                 Choose dataset
                              default: cifar10
                              options: cifar100 / tinyimagenet / imagenet  
    --epochs                  Number of training epochs
                              default: 600  
    --lr                      Initial learning rate
                              default: 0.1  
    --batch_size / -b         Batch size
                              default: 256   
    --batch_size_test / -bt   Evaluating batch size
                              default: 128  
    --momentum                Momentum
                              default: 0.9  
    --workers                 Data loading workers
                              default: 8  
    --print_freq              Print frequency 
                              default: 100  
    --time_estimate           Estimate finish time of the program
                              set to 0 to disable
                              default: 1     
    --lr_type                 Type of learning rate scheduler
                              default: cos (CosineAnnealingLR)
                              options: step (MultiStepLR)  
    --lr_decay_step           If choose MultiStepLR, set milestones.
                              e.g., 30 60 90      
    --warm_up                 Use warm up  
    --weight_decay            Weight decay
                              default: 5e-4  
    --tau_min                 Minimum of param τ in ReCU(x)
                              default: 0.85 
    --tau_max                 Maximum of param τ in ReCU(x)
                              default: 0.99  
    --resume                  Reload last checkpoint if the training is terminated by accident.

Results on CIFAR-10.

Quantized model Link batch_size batch_size_test epochs training method Top-1
resnet18_1w1a 256 128 600 vanilla 92.8
resnet18_1w1a 256 128 600 finetune 93.2
resnet20_1w1a 256 128 600 vanilla 87.5
resnet20_1w1a 256 128 600 finetune 88.0
vgg_small_1w1a 256 128 600 vanilla 92.2
vgg_small_1w1a 256 128 600 finetune 93.3

To ensure the reproducibility, please refer to our training details provided in the links for our quantized models.

To verify the performance of our quantized models on CIFAR-10, please use the following command:

python -u main.py \
--gpus 0 \
-e [best_model_path] \
--model resnet18_1w1a (resnet20_1w1a or vgg_small_1w1a) \
--data_path [DATA_PATH] \
--dataset cifar10 \
-bt 128 \

Training on ImageNet

python -u main.py \
--gpus 0,1 \
--model resnet18_1w1a (or resnet34_1w1a) \
--results_dir ./result \
--data_path [DATA_PATH] \
--dataset imagenet \
--epochs 200 \
--lr 0.1 \
-b 512 \
-bt 256 \
--lr_type cos \
--warm_up \
--weight_decay 1e-4 \
--tau_min 0.85 \
--tau_max 0.99 \

Other arguments are the same as those on CIFAR-10.

Optional arguments

optinal arguments:
    --model / -a              Choose model   
                              default: resnet18_1w1a   
                              options: resnet34_1w1a  

We provide two types of dataloaders for ImageNet by nvidia-dali and Pytorch respectively. We empirically find that the dataloader by nvidia-dali can offer higher training efficiency than Pytorch (14min vs 28min on 2 Tesla V100 for one epoch when training ResNet-18), but the model accuracy would be affected. The reported experimental results are on the basis of Pytorch. If interested, you can try dataloader by nvidia-dali via adding the optional argument --use_dali to obtain a shorter training time.

Nvidia-dali package

# for CUDA 10
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda100
# for CUDA 11
pip install --extra-index-url https://developer.download.nvidia.com/compute/redist nvidia-dali-cuda110

Results on ImageNet

Quantized model Link batch_size batch_size_test epochs use_dali training method Top-1 Top-5
resnet18_1w1a 512 256 200 vanilla 60.98 82.57
resnet18_1w1a 512 256 200 finetune 61.20 82.93
resnet34_1w1a 512 256 200 vanilla 65.10 85.78
resnet34_1w1a 512 256 200 finetune 65.25 85.98

To ensure the reproducibility, please refer to our training details provided in the links for our quantized models. \

To verify the performance of our quantized models on ImageNet, please use the following command:

python -u main.py \
--gpu 0 \
-e [best_model_path] \
--model resnet18_1w1a (or resnet34_1w1a)\
--dataset imagenet \
--data_path [DATA_PATH] \
-bt 256 \

Comparison with SOTAs

We test our ReCU using the same ResNet-18 structure and training setttings as ReActNet, and obtain higher top-1 accuracy.

Methods Top-1 acc Quantized model link
ReActNet 65.9 ReActNet (Bi-Real based)
ReCU 66.4 ResNet-18

To verify the performance of our quantized models with ReActNet-like structure on ImageNet, please use the following command:

cd imagenet_two-stage && python -u evaluate.py \
python -u main.py \
--gpus 0 \
-e [best_model_path] \
--model resnet18_1w1a \
--data_path [DATA_PATH] \
--dataset imagenet \
-bt 256 \