@inproceedings{
zadaianchuk2023unsupervised,
title={Unsupervised Semantic Segmentation with Self-supervised Object-centric Representations},
author={Andrii Zadaianchuk and Matthaeus Kleindessner and Yi Zhu and Francesco Locatello and Thomas Brox},
booktitle={International Conference on Learning Representations},
year={2023},
url={https://openreview.net/forum?id=1_jFneF07YC}�}
- Install poetry:
curl -sSL https://install.python-poetry.org | python3 -
- Clone this repository
- Create poetry environment:
poetry install
- Activate the poetry virtual environment:
poetry shell
- Download PASCAL VOC and MS COCO datasets and change dataset and results paths in config files.
python ./scripts/download_coco.py --download-dir $PWD/data/COCO --split train python ./scripts/download_coco.py --download-dir $PWD/data/COCO --split validation python ./scripts/download_pascal.py --download-dir $PWD/data/PASCAL_VOC
- Download BasNet pre-trained with predictions from DeepUSPS from here.
For convenience, you can use
wget
to download google drive file directly:Please update path to the checkpoint in the dataset config files if you change the download folder or filename.bash ./scripts/download_unsupervised_basnet.sh ./data/basnet_unsupervised.pth
To run clustering iteration activate poetry env and run one of the experiments:
python comus/clustering/objects_clustering.py dataset=pascal dataset.split=val clustering.core_size=100 pathes.repo=$PWD
python comus/clustering/objects_clustering.py dataset=coco dataset.split=val clustering.core_size=100 pathes.repo=$PWD
To run full COMUS training on PASCAL VOC dataset activate poetry env and run:
python comus/main.py dataset=pascal self_training=pascal eval_model=pascal pathes.repo=$PWD