Currently in development
The carecompare
package is an R
toolkit built to enable US hospitals
and health systems to access, explore, and analyze performance in
quality measures and payment programs
from the Centers for Medicare and Medicaid
Services (CMS).
- From source
devtools::install_github("zajichek/carecompare")
require(carecompare)
#> Loading required package: carecompare
Generic access to the CMS Provider Data Catalog.
# Extract the topics
topics <- pdc_topics()
topics
#> [1] "Helpful Contacts"
#> [2] "Dialysis facilities"
#> [3] "Home health services"
#> [4] "Hospice care"
#> [5] "Hospitals"
#> [6] "Inpatient rehabilitation facilities"
#> [7] "Long-term care hospitals"
#> [8] "Nursing homes including rehab services"
#> [9] "Physician office visit costs"
#> [10] "Doctors and clinicians"
#> [11] "Supplier directory"
#> [12] "Medicare plan finder"
# Examine the metadata for a given topic
hospital_data <- pdc_datasets("Hospitals")
hospital_data
#> # A tibble: 67 × 7
#> datasetid topic title description issued modified downloadurl
#> <chr> <chr> <chr> <chr> <date> <date> <chr>
#> 1 4jcv-atw7 Hospitals Ambulatory… A list of … 2022-01-07 2022-01-07 https://da…
#> 2 axe7-s95e Hospitals Ambulatory… This file … 2022-01-07 2022-01-07 https://da…
#> 3 wue8-3vwe Hospitals Ambulatory… This file … 2022-01-07 2022-01-07 https://da…
#> 4 muwa-iene Hospitals CMS Medica… This data … 2020-12-10 2022-01-07 https://da…
#> 5 ynj2-r877 Hospitals Complicati… Complicati… 2020-12-10 2022-01-07 https://da…
#> 6 qqw3-t4ie Hospitals Complicati… Complicati… 2020-12-10 2022-01-07 https://da…
#> 7 bs2r-24vh Hospitals Complicati… Complicati… 2020-12-10 2022-01-07 https://da…
#> 8 tqkv-mgxq Hospitals Comprehens… Comprehens… 2020-12-10 2021-06-15 https://da…
#> 9 bzsr-4my4 Hospitals Data Updat… Lists the … 2020-12-10 2022-03-21 https://da…
#> 10 y9us-9xdf Hospitals Footnote C… The footno… 2020-12-10 2021-09-22 https://da…
#> # … with 57 more rows
# Search for a dataset
hospital_data %>%
dplyr::filter(
title %>%
stringr::str_detect(
pattern = "(?i)readmission"
)
) %>%
knitr::kable(format = "pandoc")
datasetid | topic | title | description | issued | modified | downloadurl |
---|---|---|---|---|---|---|
9n3s-kdb3 | Hospitals | Hospital Readmissions Reduction Program | In October 2012, CMS began reducing Medicare payments for subsection(d) hospitals with excess readmissions under the Hospital Readmissions Reduction Program (HRRP). Excess readmissions are measured by a ratio, calculated by dividing a hospital’s predicted rate of readmissions for heart attack (AMI), heart failure (HF), pneumonia, chronic obstructive pulmonary disease (COPD), hip/knee replacement (THA/TKA), and coronary artery bypass graft surgery (CABG) by the expected rate of readmissions, based on an average hospital with similar patients. | 2020-12-10 | 2022-01-19 | https://data.cms.gov/provider-data/sites/default/files/resources/6862887588c0e2d720f0c821f6ed8e76_1642665920/FY_2022_Hospital_Readmissions_Reduction_Program_Hospital.csv |
# Import the data for a given dataset
pdc_read(
datasetid = "9n3s-kdb3"
)
#> Rows: 19020 Columns: 12
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: ","
#> chr (11): Facility Name, Facility ID, State, Measure Name, Number of Dischar...
#> dbl (1): Footnote
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 19,020 × 12
#> `Facility Name` `Facility ID` State `Measure Name` `Number of Dis…` Footnote
#> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 SOUTHEAST HEALT… 010001 AL READM-30-HIP-… 165 NA
#> 2 SOUTHEAST HEALT… 010001 AL READM-30-CABG… 193 NA
#> 3 SOUTHEAST HEALT… 010001 AL READM-30-AMI-… 424 NA
#> 4 SOUTHEAST HEALT… 010001 AL READM-30-HF-H… 905 NA
#> 5 SOUTHEAST HEALT… 010001 AL READM-30-COPD… 310 NA
#> 6 SOUTHEAST HEALT… 010001 AL READM-30-PN-H… 504 NA
#> 7 MARSHALL MEDICA… 010005 AL READM-30-COPD… 378 NA
#> 8 MARSHALL MEDICA… 010005 AL READM-30-AMI-… N/A NA
#> 9 MARSHALL MEDICA… 010005 AL READM-30-HF-H… 223 NA
#> 10 MARSHALL MEDICA… 010005 AL READM-30-CABG… N/A 5
#> # … with 19,010 more rows, and 6 more variables:
#> # `Excess Readmission Ratio` <chr>, `Predicted Readmission Rate` <chr>,
#> # `Expected Readmission Rate` <chr>, `Number of Readmissions` <chr>,
#> # `Start Date` <chr>, `End Date` <chr>
hospitals
#> # A tibble: 5,306 × 12
#> HospitalID Name Address City State Zip County Type Ownership FullAddress
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 010001 SOUT… 1108 R… DOTH… AL 36301 HOUST… Acut… Governme… 1108 ROSS …
#> 2 010005 MARS… 2505 U… BOAZ AL 35957 MARSH… Acut… Governme… 2505 U S H…
#> 3 010006 NORT… 1701 V… FLOR… AL 35630 LAUDE… Acut… Propriet… 1701 VETER…
#> 4 010007 MIZE… 702 N … OPP AL 36467 COVIN… Acut… Voluntar… 702 N MAIN…
#> 5 010008 CREN… 101 HO… LUVE… AL 36049 CRENS… Acut… Propriet… 101 HOSPIT…
#> 6 010011 ST. … 50 MED… BIRM… AL 35235 JEFFE… Acut… Voluntar… 50 MEDICAL…
#> 7 010012 DEKA… 200 ME… FORT… AL 35968 DE KA… Acut… Propriet… 200 MED CE…
#> 8 010016 SHEL… 1000 F… ALAB… AL 35007 SHELBY Acut… Voluntar… 1000 FIRST…
#> 9 010018 CALL… 1720 U… BIRM… AL 35233 JEFFE… Acut… Voluntar… 1720 UNIVE…
#> 10 010019 HELE… 1300 S… SHEF… AL 35660 COLBE… Acut… Governme… 1300 SOUTH…
#> # … with 5,296 more rows, and 2 more variables: Latitude <dbl>, Longitude <dbl>
cms_payments()
#> # A tibble: 188,806 × 6
#> HospitalID MSDRGCode Discharges AverageCoveredCharges AverageTotalPayment
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 010001 003 14 326515. 62788.
#> 2 010001 023 55 140875. 29767.
#> 3 010001 024 20 109788. 22780.
#> 4 010001 025 23 124579. 24107.
#> 5 010001 027 16 75029. 18216.
#> 6 010001 038 20 73875. 9721.
#> 7 010001 039 45 47281. 6985.
#> 8 010001 054 11 34797. 7782
#> 9 010001 056 15 66157. 11793.
#> 10 010001 057 38 27677. 7393.
#> # … with 188,796 more rows, and 1 more variable: AverageMedicarePayment <dbl>
cms_msdrg()
#> Rows: 767 Columns: 9
#> ── Column specification ────────────────────────────────────────────────────────
#> Delimiter: "\t"
#> chr (6): MS-DRG, FY 2022 Final Post-Acute DRG, FY 2022 Final Special Pay DRG...
#> dbl (3): Weights, Geometric mean LOS, Arithmetic mean LOS
#>
#> ℹ Use `spec()` to retrieve the full column specification for this data.
#> ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 767 × 7
#> MSDRGCode MSDRGDescription MSDRGType MajorDiagnostic… Weight GMLOS AMLOS
#> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 001 HEART TRANSPLANT OR … SURG PRE 28.9 30.1 39.1
#> 2 002 HEART TRANSPLANT OR … SURG PRE 15.0 15.4 18.2
#> 3 003 ECMO OR TRACHEOSTOMY… SURG PRE 19.1 22.4 30.2
#> 4 004 TRACHEOSTOMY WITH MV… SURG PRE 11.9 20 24.6
#> 5 005 LIVER TRANSPLANT WIT… SURG PRE 10.2 14.4 19.4
#> 6 006 LIVER TRANSPLANT WIT… SURG PRE 4.70 7.5 8.1
#> 7 007 LUNG TRANSPLANT SURG PRE 11.6 17.4 20.8
#> 8 008 SIMULTANEOUS PANCREA… SURG PRE 5.43 9 10.2
#> 9 010 PANCREAS TRANSPLANT SURG PRE 3.62 8 9.1
#> 10 011 TRACHEOSTOMY FOR FAC… SURG PRE 5.02 10.9 13.8
#> # … with 757 more rows