/rush_emnlp_2015

Forked from A Neural Attention Model for Abstractive Sentence Summarization in DyNet and further devloped

Primary LanguagePython

A Neural Attention Model for Abstractive Sentence Summarization

Unofficial DyNet implementation of the paper A Neural Attention Model for Abstractive Sentence Summarization (EMNLP 2015)[1].

1. Requirements

  • Python 3.6.0+
  • DyNet 2.0+
  • NumPy 1.12.1+
  • scikit-learn 0.19.0+
  • tqdm 4.15.0+

2. Prepare dataset

To get preprocedded gigaword corpus, run

sh download_data.sh

.

3. Train

Arguments

  • --gpu: GPU ID to use. For cpu, set -1 [default: 0]
  • --n_epochs: Number of epochs [default: 3]
  • --n_train: Number of training data (up to 3803957) [default: 3803957]
  • --n_valid: Number of validation data (up to 189651) [default: 189651]
  • --batch_size: Mini batch size [default: 32]
  • --vocab_size: Vocabulary size [default: 60000]
  • --emb_dim: Embedding size [default: 256]
  • --hid_dim: Hidden state size [default: 256]
  • --encoder_type: Encoder type. [default: attention]
    • bow: Bag-of-words encoder.
    • attention: Attention-based encoder.
  • --c: Window size in neural language model [default: 5]
  • --q: Window size in attention-based encoder [default: 2]
  • --alloc_mem: Amount of memory to allocate [mb] [default: 8192]

Command example

python train.py --n_epochs 10

4. Test

Arguments

  • --gpu: GPU ID to use. For cpu, set -1 [default: 0]
  • --n_test: Number of test data [default: 189651]
  • --beam_size: Beam size [default: 5]
  • --max_len: Maximum length of decoding [default: 100]
  • --model_file: Trained model file path [default: ./model_e1]
  • --input_file: Test file path [default: ./data/valid.article.filter.txt]
  • --output_file: Output file path [default: ./pred_y.txt]
  • --w2i_file: Word2Index file path [default: ./w2i.dump]
  • --i2w_file: Index2Word file path [default: ./i2w.dump]
  • --alloc_mem: Amount of memory to allocate [mb] [default: 1024]

Command example

python test.py --beam_size 10

5. Evaluate

You can use pythonrouge[2] to compute the ROUGE scores. An example is in evaluate.ipynb.

6. Results

6.1. Gigaword

Compute ROUGE scorew with 101 valid data.

ROUGE-1 (F1) ROUGE-2 (F1) ROUGE-L (F1)
My implementation 31.56 14.56 30.02

6.2. DUC2004

Work in progress.

7. Pretrained model

To get the pretrained model, run

sh download_pretrained_model.sh

.

Notes

References