Zeshi Yang, KangKang Yin, and Libin Liu
ACM Trans. Graph., Vol. 41, No. 4, Article 95. (SIGGRAPH 2022)
- mujoco_py (version:1.50.1.1)
- PyGLM (version: 0.4.8b1)
- torch (version:1.9.0+cu11)
- pytorch3d (latest)
- Everything else in
requirements.txt
If you need help with installing the dependecies please refer to our installation guide in installation.md.
To run our demo, run
python test.py --xml ./released_models/demo.xml --traj ./released_models/demo.txt --model_path ./released_models/model.tar
to visualize our pre-trained control policy for some chopsticks grasping tasks.
To train policies with generated trajectories, run
python train.py --xml 'path_to_MJCF' --traj 'path_of_trajectories' --threads 'num_threads' --logdir 'path_to_save_models'
For example:
python train.py --xml ./data/hand_xml_grasp/demo.xml --traj ./data/traj/ --threads 16 --logdir ./results
You can modify the task_placeholder.py
to generate your own training data.
Run
python task_placeholder.py --chop_xml ./data/xml_templates/standard/0/chop_kin.xml --hand_xml ./data/xml_templates/standard/0/sim.xml --task_name 'your_task_name' --pose ./data/xml_templates/standard/0/standard.txt
to generate trajectories and MJCF file used for training. The generated motion files will store in ./data/your_task_name/
and the MJCF file will be in ./data/hand_xml_grasp/
.