/tiny-imagenet

Primary LanguagePythonMIT LicenseMIT

Tiny-ImageNet training in Torchvision

This project expends torchvision to support training on Tiny-ImageNet.

Code is based on the official implementation for image classification in torchvision: https://github.com/pytorch/vision/tree/main/references/classification

Model Zoo

Hugging Face Models

name epochs acc@1 (last) url
ResNet-18 50 59.57 model
ResNet-18 100 60.23 model
ResNet-18 200 60.50 model
ResNet-50 50 62.77 model
ResNet-50 100 63.19 model
ResNet-50 200 63.45 model

Training

All models have been trained on 1x A100 GPU with the following parameters with different epochs.

Parameter value
--batch_size 256
--epochs 50
--lr 0.2
--momentum 0.9
--wd, --weight-decay 1e-4
--lr-scheduler cosineannealinglr
--lr-warmup-epochs 5
--lr-warmup-method linear
--lr-warmup-decay 0.01
torchrun --nproc_per_node=1  classification/train.py \
    --model 'resnet18' \
    --batch-size 256 \
    --epochs 50 \
    --opt 'sgd' \
    --lr 0.2 \
    --momentum 0.9 \
    --weight-decay 1e-4 \
    --lr-scheduler 'cosineannealinglr' \
    --lr-warmup-epochs 5 \
    --lr-warmup-method 'linear' \
    --lr-warmup-decay 0.01 \
    --output-dir 'save/rn18_50ep'

or

cd script
bash train_rn18.sh

Downstream Use

  • Dataset Distillation - SRe2L
    • distill Tiny-ImageNet images from these pre-trained models
    • post-train the validation model on the distilled dataset using classification/train_kd.py

Switch to Tiny ImageNet from ImageNet

Dataset Transform

https://github.com/Westlake-AI/openmixup/blob/084a8f113df34997d041c323a2ea1c9342f5400d/configs/classification/_base_/datasets/tiny_imagenet/sz64_bs100.py#L10-L20

Modified ResNet

replace the 7 × 7 convolution and MaxPooling by a 3 × 3 convolution on ResNet models

model = torchvision.models.get_model('resnet18', num_classes=200)
model.conv1 = nn.Conv2d(3,64, kernel_size=(3,3), stride=(1,1), padding=(1,1), bias=False)
model.maxpool = nn.Identity()

LR optimizations

https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/#lr-optimizations

mixup and cutmix (optional)

https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/#mixup-and-cutmix

Reference

Code Base (Official TorchVision): https://github.com/pytorch/vision/tree/main/references/classification

Blog V1 -> V2: https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/

ImageNet Evaluation Table: https://pytorch.org/vision/stable/models.html

AutoMixup Paper: https://arxiv.org/abs/2103.13027