Official codes of ICCV2023 paper: <<Femtodet: an object detection baseline for energy versus performance tradeoffs>>
- Python 3.8
- Torch 1.9.1+cu111
- Torchvision 0.10.1+cu111
- mmcv-full 1.4.2
Do it as mmdetection had done.
-
Download the dataset.
We mainly train FemtoDet on Pascal VOC 0712, you should firstly download the datasets. By default, we assume the dataset is stored in ./data/.
-
Dataset preparation.
Then, you can move all images to ./data/voc2coco/jpeg/;you can use our converted coco format annotation files(umbz) and put these files to ./data/voc2coco/annotations/; finally, the directory structure is
*data/voc2coco
*jpeg
*2008_003841.jpg
*...
*annotations
*trainvoc_annotations.json
*testvoc_annotations.json
- Download the initialized models. We trained our designed backbone on ImageNet 1k, and used it for the inite weights(6tns) of FemtoDet.
FemtoDet/weights/*
bash ./tools/train_femtodet.sh 4
If you find the code useful for your research, please consider citing:
@misc{tu2023femtodet,
title={FemtoDet: An Object Detection Baseline for Energy Versus Performance Tradeoffs},
author={Peng Tu and Xu Xie and Guo AI and Yuexiang Li and Yawen Huang and Yefeng Zheng},
year={2023},
eprint={2301.06719},
archivePrefix={arXiv},
primaryClass={cs.CV}
}