PyTorch implementation of efficient image super-resolution models.
torch == 1.8.1
torchmetrics
loguru
tqdm
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 main.py
CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py
Model | Year | Train on1 | Set5 | Set14 | BSD100 | |||
---|---|---|---|---|---|---|---|---|
2x | PSNR (paper/my) | SSIM | PSNR | SSIM | PSNR | SSIM | ||
CARN | 2018 | T+B+D | 37.76/37.90 | 0.9590/0.9605 | 33.52/33.14 | 0.9166/0.9152 | 32.09/32.06 | 0.8978/0.8985 |
DRCN | 2015 | T | 37.63/37.85 | 0.9588/0.9604 | 33.04/33.22 | 0.9118/0.916 | 31.85/32.05 | 0.8942/0.8982 |
DRRN | 2017 | T+B | 37.74/37.76 | 0.9591/0.9599 | 33.23/33.14 | 0.9136/0.9149 | 32.05/31.99 | 0.8973/0.8974 |
EDSR | 2017 | D | 37.99/37.90 | 0.9604/0.9606 | 33.57/33.22 | 0.9175/0.9163 | 32.16/32.10 | 0.8994/0.899 |
ESPCN | 2016 | I+T | n.a./36.85 | n.a./0.9559 | n.a./32.31 | n.a./0.9087 | n.a./31.40 | n.a./0.8897 |
FSRCNN | 2016 | T+G | 37.00/37.27 | 0.9558/0.958 | 32.63/32.65 | 0.9088/0.9115 | 31.53/31.67 | 0.8920/0.8934 |
IDN | 2018 | T+B | 37.83/37.84 | 0.96/0.9604 | 33.30/33.12 | 0.9148/0.9155 | 32.08/32.06 | 0.8985/0.8985 |
LapSRN | 2017 | T+B | 37.52/37.59 | 0.9591/0.9592 | 32.99/32.96 | 0.9124/0.9138 | 31.80/31.89 | 0.8952/0.8961 |
SRCNN | 2014 | I+T | 36.66/36.88 | 0.9542/0.9561 | 32.45/32.42 | 0.9067/0.9092 | 31.36/31.50 | 0.8879/0.8907 |
SRDenseNet | 2017 | I | n.a./37.67 | n.a./0.9596 | n.a./33.05 | n.a./0.9142 | n.a./31.93 | n.a./0.8967 |
VDSR | 2015 | T+B | 37.53/37.74 | 0.9587/0.9598 | 33.03/33.06 | 0.9124/0.9145 | 31.90/31.97 | 0.8960/0.8973 |
[1 Original training dataset, which are short for B (BSD200), D (DIV2K), G (General100), I (ImageNet), T (T91). In my experiments, the training dataset is T + G + B.]
/train
/T91
/General100
/BSD200
/val
/Set5
/Set14
/BSD100
Footnotes
-
Fast, Accurate, and Lightweight Super-Resolution with Cascading Residual Network ↩
-
Deeply-Recursive Convolutional Network for Image Super-Resolution ↩
-
Image Super-Resolution via Deep Recursive Residual Network ↩
-
Enhanced Deep Residual Networks for Single Image Super-Resolution ↩
-
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network ↩
-
Accelerating the Super-Resolution Convolutional Neural Network ↩
-
Fast and Accurate Single Image Super-Resolution via Information Distillation Network ↩
-
Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution ↩
-
Accurate Image Super-Resolution Using Very Deep Convolutional Networks ↩