Learning Anchored Unsigned Distance Functions with Gradient Direction Alignment for Single-view Garment Reconstruction (ICCV 2021 Oral)
This repository contains the code for the paper:
Learning Anchored Unsigned Distance Functions with Gradient Direction Alignment for Single-view Garment Reconstruction
Fang Zhao, Wenhao Wang, Shengcai Liao and Ling Shao
- Cuda 9.2
- Python 3.7
- Pytorch 1.6
- ChamferDistancePytorch
To install all python dependencies for this project:
conda env create -f env_anchor_udf.yml
conda activate AnchorUDF
We provide the preprocessed data used for model training and evaluation. You can prepare your own data by following the data generation steps of PIFu.
To do a quick test, download the trained models and run:
python -m apps.eval --results_path {path_of_output} --name {folder_of_output} --dataroot {path_of_dataset} --test_folder_path {folder_of_test_data, e.g., 290-1} --load_netG_checkpoint_path ./checkpoints/anchor_udf_df3d/netG_epoch_59 --anchor --num_steps 5 --filter_val 0.007
For the HD version:
python -m apps.eval_hd --results_path {path_of_output} --name {folder_of_output} --dataroot {path_of_dataset} --test_folder_path {folder_of_test_data, e.g., 290-1} --load_netMR_checkpoint_path ./checkpoints/anchor_udf_hd_df3d/netMR_epoch_14 --anchor --merge_layer 2 --joint_train --loadSize 1024 --num_steps 5 --filter_val 0.007
Optionally, you can remove outliers by statistical outlier removal:
python -m apps.remove_outlier --file_path {path_of_file} --nb_neighbors 5 --std_ratio 10.0
To generate targets for training:
python -m apps.gen_targets --dataroot {path_of_dataset} --sigma {0.003, 0.02, AND 0.08, separately} --point_num 600
To train the model:
- First run:
python -m apps.train --dataroot {path_of_dataset} --random_flip --random_scale --random_trans --anchor --learning_rate 5e-5 --batch_size 4 --name {path_of_saved_model} --schedule 40 --num_epoch 50
- Then add gradient direction alignment:
python -m apps.train --dataroot {path_of_dataset} --random_flip --random_scale --random_trans --anchor --learning_rate 5e-6 --batch_size 4 --num_sample_inout 2000 --name {path_of_saved_model} --grad_constraint --backbone_detach --no_num_eval --continue_train --resume_epoch 49 --num_epoch 60
To evaluate the model:
- Obtain reconstruction results on the test set:
python -m apps.eval_all --dataroot {path_of_dataset} --results_path {path_of_output} --load_netG_checkpoint_path {path_of_model} --anchor --num_steps 5 --filter_val 0.007
- Compute Chamfer and P2S errors:
python -m apps.compute_errors --root_path {path_of_dataset} --results_path {path_of_output}
Our code is based on PIFu and NDF. We thank the authors for their excellent work!
If you use this code for your research, please consider citing:
@inproceedings{zhao2021learning,
title={Learning Anchored Unsigned Distance Functions with Gradient Direction Alignment for Single-view Garment Reconstruction},
author={Zhao, Fang and Wang, Wenhao and Liao, Shengcai and Shao, Ling},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={12674--12683},
year={2021}
}