/yolov3-curling-tracking

A curling detection and tracking system based on yolov3

Primary LanguagePython

YOLOv3-Curling-Tracking

基于 Yolov3 + Deepsort 实现的冰壶识别与跟踪,Yolov3框架采用 https://github.com/eriklindernoren/PyTorch-YOLOv3 ,数据集视频来自YouTube,手动分割标注。原文: https://zhanghc.site/archives/yolo-curling-track

Installation

Clone and install requirements
$ git clone git@github.com:zhhaochen/yolov3-curling-tracking.git
$ cd PyTorch-YOLOv3/
$ pip install -r requirements.txt
Download pretrained weights
# yolov3
cd weights
sh download_weights.sh
# curling
https://drive.google.com/file/d/1FC5xLvL-jQSNNBXKI-ocZL19bc9xxiu5/view?usp=sharing
Download dataset
https://drive.google.com/file/d/1qkbhFc-BeE348NCQKQ_NALYzaUZeCYaj/view?usp=sharing
Project structure
${Curling_ROOT}
├── checkpoints                 #预训练冰壶检测权重
├── config                      #yolov3模型配置文件
├── data                        #冰壶数据集和标注
├── deep_sort                   #基于deepsort的跟踪算法模块
├── test                        #对detect_model中的模块的测试文件
├── utils                       #yolov3一些相关函数
├── weights                     #基本yolov3预训练权重
├── darknet.py                  #darknet模型
├── detect.py                   #原基于coco数据集的检测文件,作为示例
├── detect_folder.py            #文件夹图片检测示例文件,在detect.py基础上使用cv2画图
├── detect_single.py            #基于单张图片的冰壶检测
├── detect_webcam.py            #基于视频的冰壶检测
├── detect_webcam_deepsort.py   #基于视频的冰壶检测,并使用deepsort跟踪
├── detect_webcam_track.py      #基于视频的冰壶检测,并使用opencv自带跟踪
├── models.py                   #yolov3模型
├── spilt_video.py              #视频抽帧切割,用于数据集制作
├── train_curling.py            #训练冰壶检测
├── xml2yolo.py                 #将labelImg标注转为yolo标注
├── requirements.txt

Run

修改各测试文件配置,直接运行即可,如图为基于deepsort的跟踪检测。