/GoMate

GoMate:RAG Framework within Reliable input,Trusted output

Primary LanguagePython

GoMate

可配置的模块化RAG框架。

Python workflow status codecov pydocstyle PEP8

🔥Gomate 简介

GoMate是一款配置化模块化的Retrieval-Augmented Generation (RAG) 框架,旨在提供可靠的输入与可信的输出,确保用户在检索问答场景中能够获得高质量且可信赖的结果。

GoMate框架的设计核心在于其高度的可配置性和模块化,使得用户可以根据具体需求灵活调整和优化各个组件,以满足各种应用场景的要求。

🔨Gomate框架

framework.png

✨主要特色

“Reliable input,Trusted output”

可靠的输入,可信的输出

🏗️ 更新记录

  • RAPTOR:递归树检索器实现

🚀快速上手

安装环境

pip install -r requirements.txt

1 文档解析

from gomate.modules.document.parset import TextParser
from gomate.modules.store import VectorStore

docs = TextParser('./data/docs').get_content(max_token_len=600, cover_content=150)
vector = VectorStore(docs)

2 提取向量

from gomate.modules.retrieval.embedding import BgeEmbedding
embedding = BgeEmbedding("BAAI/bge-large-zh-v1.5")  # 创建EmbeddingModel
vector.get_vector(EmbeddingModel=embedding)
vector.persist(path='storage')  # 将向量和文档内容保存到storage目录下,下次再用就可以直接加载本地的数据库
vector.load_vector(path='storage')  # 加载本地的数据库

3 检索文档

question = '伊朗坠机事故原因是什么?'
contents = vector.query(question, EmbeddingModel=embedding, k=1)
content = '\n'.join(contents[:5])
print(contents)

4 大模型问答

from gomate.modules.generator.llm import GLMChat
chat = GLMChat(path='THUDM/chatglm3-6b')
print(chat.chat(question, [], content))

5 添加文档

docs = TextParser.get_content_by_file(file='data/docs/伊朗问题.txt', max_token_len=600, cover_content=150)
vector.add_documents('storage', docs, embedding)
question = '如今伊朗人的经济生活状况如何?'
contents = vector.query(question, EmbeddingModel=embedding, k=1)
content = '\n'.join(contents[:5])
print(contents)
print(chat.chat(question, [], content))

🔧定制化RAG

构建自定义的RAG应用

from gomate.modules.document.reader import ReadFiles
from gomate.modules.generator.llm import GLMChat
from gomate.modules.retrieval.embedding import BgeEmbedding
from gomate.modules.store import VectorStore


class RagApplication():
    def __init__(self, config):
        pass

    def init_vector_store(self):
        pass

    def load_vector_store(self):
        pass

    def add_document(self, file_path):
        pass

    def chat(self, question: str = '', topk: int = 5):
        pass

模块可见rag.py

🌐体验RAG效果

可以配置本地模型路径

class ApplicationConfig:
    llm_model_name = '/data/users/searchgpt/pretrained_models/chatglm3-6b'  # 本地模型文件 or huggingface远程仓库
    embedding_model_name = '/data/users/searchgpt/pretrained_models/bge-reranker-large'  # 检索模型文件 or huggingface远程仓库
    vector_store_path = './storage'
    docs_path = './data/docs'

python app.py

浏览器访问:127.0.0.1:7860 demo.png