Federated Learning

人工智能(Artificial Intelligence, AI)进入以深度学习为主导的大数据时代,基于大数据的机器学习既推动了AI的蓬勃发展,也带来了一系列安全隐患。这些隐患来源于深度学习本身的学习机制,无论是在它的模型建造(训练)阶段,还是在模型推理和使用阶段。这些安全隐患如果被有意或无意地滥用,后果将十分严重。


联邦学习是一种 隐私保护、数据本地存储与计算 的机器学习算法。

文献参考

Part 1: Introduction

Part 2: Survey

Part 3: Benchmarks

Part 4: Model Aggregation

Part 5: Statistical Heterogeneity

5.1 Meta Learning

5.2 Multi-task Learning

5.3 Convergence

Part 6: System

Part 7: Communication Efficiency

7.1 Compression

7.2 Important-Based Updating

7.3 Decentralization

Part 8: Resource Allocation

8.1 Participants Selection

8.2 Adaptive Aggregation

8.3 Incentive Mechanism

Part 9: Vertical Federated Learning

Part 10: Adversarial Attacks

Part 11: Data Privacy and Confidentiality

11.1 Courses

11.2 Differential Privacy

11.3 Secure Multi-party Computation

Secret Sharing

Build Safe AI Series

MPC related Paper

Helen: Maliciously Secure Coopetitive Learning for Linear Models (NIPS 2019 Workshop)

11.4 Privacy Preserving Machine Learning

Part 12: Other Learning

Part 13: Frameworks

Part 14: Workshops

Part 15: Applications

15.1 Healthcare

15.2 Natual Language Processing

Google

Snips

15.3 Computer Vision

15.4 Recommendation

15.5 Industrial

Part 16: Company