/czipline

A股zipline(1.2.0)

Primary LanguagePythonApache License 2.0Apache-2.0

Zipline

Zipline是QUANTOPIAN开发的算法交易库。这是一个事件驱动,支持回测和实时交易的系统。 Zipline目前有一个免费的回测平台,可以很方便编写交易策略和执行回测。为处理A股数据,增加或修改基础数据相关部分,用于本机策略回测分析。

功能

新增USEquityPricing数据列
  • prev_close 前收盘
  • turnover 换手率
  • amount 成交额
  • tmv 总市值
  • cmv 流通市值
  • circulating_share 流通股本
  • total_share 总股本

注意 以上数据不会因股票分红派息而调整

新增Fundamentals数据容器

Fundamentals是用于pipeline的数据集容器,包括偶发性变化及固定信息数据,如上市日期、行业分类、所属概念、财务数据等信息。

投资组合优化

参考quantopian公司帮助文档,完成optimize模块,实现在限定条件下的MaximizeAlphaTargetWeights投资组合优化。

技术分析图

AnalysisFigure绘制OHLCV及常用MACD等技术指标图,使用买入卖出信号标注来辅助策略改进。

提供后台自动提取、转换数据脚本

通过定时后台计划任务,自动提取回测所需网络数据,并转换为符合zipline需求的数据格式,可以更加专注于编写策略及相关分析。

安装

克隆
$ git clone https://github.com/zhangshoug/czipline.git
建立环境
$ conda create -n zipline python=3.6 # 环境名称随意,python版本要求3.6
安装依赖包

以下安装需要进入环境

$ source activate zipline # 进入刚才建立的环境 
$ activate zipline        # windows 进入环境

下载并安装ta-lib包以及数据处理包、统计分析包。转移至项目安装文件所在目录后执行:

参考talib安装方法

$ # 以下需确保在zipline项目安装目录下执行
$ pip install -r ./etc/requirements.txt
$ pip install -r ./etc/requirements_add.txt
编译C扩展库
$ python setup.py build_ext --inplace
安装zipline
$ python setup.py install
$ # 如需开发安装
$ python setup.py develop

准备数据

成功安装zipline后,cswd包也已经成功安装。在相应环境下,执行以下命令:

$ init-stock-data # 初始化基础数据。耗时大约24小时(主要下载日线及最近一个月的分时交易数据。对数据量小,但抓取网页数据耗时长的,整理好的数据存放在github,初始化时会从该处提取,节约初始化时间。)

$ zipline ingest # 转换日线数据,耗时约10分钟

$ sql-to-bcolz # `Fundamentals`数据,耗时约1.5分钟

# 如需要进行回测分析,请运行以下指令,生成ff因子数据(empyrical包使用)
$ gen-ff-factors

初始化数据后,参考如何设置后台数据自动处理,设置后台计划任务。后台在盘后自动完成数据导入及转换。网络数据的采集可能因各种原失败,请注意查阅日志文档。文档默认路径为"~/stockdata/logs"。

验证安装

如能正常运行以下代码,证明已经安装成功。(注意,由于版本兼容问题,安装过程中会有大量警告信息,只要不是错误,可忽略)

from zipline import get_calendar
c = get_calendar('SZSH')
c.first_session
# Timestamp('1990-12-19 00:00:00+0000', tz='UTC', freq='C')

使用

计算Fama-French三因子案例涉及到:

  1. 如何在Notebook运行回测
  2. 选择基准收益率指数代码
  3. 计划函数用法
  4. Fundamentals及财务数据
  5. pipeline及自定义因子用法
  6. 回测速度

比较适合作为演示材料

%load_ext zipline
%%zipline --start 2017-1-1 --end 2018-1-1 --bm-symbol 399001
from zipline.api import symbol, sid, get_datetime

import pandas as pd
import numpy as np
from zipline.api import (attach_pipeline, pipeline_output, get_datetime,
                         calendars, schedule_function, date_rules)
from zipline.pipeline import Pipeline
from zipline.pipeline import CustomFactor
from zipline.pipeline.data import USEquityPricing
from zipline.pipeline.fundamentals import Fundamentals

# time frame on which we want to compute Fama-French
normal_days = 31
# approximate the number of trading days in that period
# this is the number of trading days we'll look back on,
# on every trading day.
business_days = int(0.69 * normal_days)


# 以下自定义因子选取期初数
class Returns(CustomFactor):
    """
    每个交易日每个股票窗口长度"business_days"期间收益率
    """
    window_length = business_days
    inputs = [USEquityPricing.close]

    def compute(self, today, assets, out, price):
        out[:] = (price[-1] - price[0]) / price[0] * 100


class MarketEquity(CustomFactor):
    """
    每个交易日每只股票所对应的总市值
    """
    window_length = business_days
    inputs = [USEquityPricing.tmv]

    def compute(self, today, assets, out, mcap):
        out[:] = mcap[0]


class BookEquity(CustomFactor):
    """
    每个交易日每只股票所对应的账面价值(所有者权益)
    """
    window_length = business_days
    inputs = [Fundamentals.balance_sheet.A107]

    def compute(self, today, assets, out, book):
        out[:] = book[0]


def initialize(context):
    """
    use our factors to add our pipes and screens.
    """
    pipe = Pipeline()
    mkt_cap = MarketEquity()
    pipe.add(mkt_cap, 'market_cap')

    book_equity = BookEquity()
    # book equity over market equity
    be_me = book_equity / mkt_cap
    pipe.add(be_me, 'be_me')

    returns = Returns()
    pipe.add(returns, 'returns')

    attach_pipeline(pipe, 'ff_example')
    schedule_function(
        func=myfunc,
        date_rule=date_rules.month_end())


def before_trading_start(context, data):
    """
    every trading day, we use our pipes to construct the Fama-French
    portfolios, and then calculate the Fama-French factors appropriately.
    """

    factors = pipeline_output('ff_example')

    # get the data we're going to use
    returns = factors['returns']
    mkt_cap = factors.sort_values(['market_cap'], ascending=True)
    be_me = factors.sort_values(['be_me'], ascending=True)

    # to compose the six portfolios, split our universe into portions
    half = int(len(mkt_cap) * 0.5)
    small_caps = mkt_cap[:half]
    big_caps = mkt_cap[half:]

    thirty = int(len(be_me) * 0.3)
    seventy = int(len(be_me) * 0.7)
    growth = be_me[:thirty]
    neutral = be_me[thirty:seventy]
    value = be_me[seventy:]

    # now use the portions to construct the portfolios.
    # note: these portfolios are just lists (indices) of equities
    small_value = small_caps.index.intersection(value.index)
    small_neutral = small_caps.index.intersection(neutral.index)
    small_growth = small_caps.index.intersection(growth.index)

    big_value = big_caps.index.intersection(value.index)
    big_neutral = big_caps.index.intersection(neutral.index)
    big_growth = big_caps.index.intersection(growth.index)

    # take the mean to get the portfolio return, assuming uniform
    # allocation to its constituent equities.
    sv = returns[small_value].mean()
    sn = returns[small_neutral].mean()
    sg = returns[small_growth].mean()

    bv = returns[big_value].mean()
    bn = returns[big_neutral].mean()
    bg = returns[big_growth].mean()

    # computing SMB
    context.smb = (sv + sn + sg) / 3 - (bv + bn + bg) / 3

    # computing HML
    context.hml = (sv + bv) / 2 - (sg + bg) / 2


def myfunc(context, data):
    d = get_datetime('Asia/Shanghai')
    print(d, context.smb, context.hml)
2017-01-26 15:00:00+08:00 0.014014289806335789 6.605843892342312
2017-02-28 15:00:00+08:00 4.1169182374497195 7.690119769984805
2017-03-31 15:00:00+08:00 0.35808304923773615 2.7492806758694215
2017-04-28 15:00:00+08:00 -4.318408584890385 5.414312699826368
2017-05-31 15:00:00+08:00 -0.4828317045367072 3.0869028143557147
2017-06-30 15:00:00+08:00 0.8640245866550513 0.09803178533289003
2017-07-31 15:00:00+08:00 -2.3024594948720227 6.2829537294457145
2017-08-31 15:00:00+08:00 3.2003154621799155 2.269609384481118
2017-09-29 15:00:00+08:00 1.1669055941862554 -0.6079568594636064
2017-10-31 15:00:00+08:00 -1.6233534895267374 -0.795885505339075
2017-11-30 15:00:00+08:00 -2.965097825507776 4.4434701009908615
2017-12-29 15:00:00+08:00 -1.1942883365086068 -0.38062423581176485
[2018-05-02 02:07:02.681398] INFO: zipline.finance.metrics.tracker: Simulated 244 trading days
first open: 2017-01-03 01:31:00+00:00
last close: 2017-12-29 07:00:00+00:00

运行时长10-12秒

特别说明:个人当前使用Ubuntu18.04操作系统

参考配置

系统

  • Ubuntu 18.04
  • Anaconda
  • python 3.6

交流

该项目纯属个人爱好,水平有限,欢迎加入来一起完善。

添加个人微信(ldf10728268),请务必备注zipline