python train_image_classifierV1.py \ --train_dir=weights \ --dataset_dir=train \ --num_samples=3320 \ --num_classes=101 \ --labels_to_names_path=labels.txt \ --model_name=inception_v3 \ --checkpoint_path=inception_v3/inception_v3.ckpt \ --checkpoint_exclude_scopes=InceptionV3/Logits,InceptionV3/AuxLogits \ --trainable_scopes=InceptionV3/Logits,InceptionV3/AuxLogits --model_name 为模型名称你可以换用slim提供的其他模型 如果不需要预训练请使用一下指令 python train_image_classifierV1.py \ --train_dir=weights \ --dataset_dir=train \ --num_samples=3320 \ --num_classes=101 \ --labels_to_names_path=labels.txt \ --model_name=inception_v3 \ python eval_image_classifierV1.py \ --checkpoint_path=weights \ --eval_dir=eval \ --dataset_dir=val \ --num_samples=350 \ --num_classes=101 \ --model_name=inception_v3 --dataset_dir为验证(测试)tfrecord文件的存放位置 val.py为多张照片测试脚本drawing里面存放要测试的照片 python val.py \ --checkpoint_path=/home/kyz/tensorflow/main/180504/weights/model.ckpt-200000 \ --test_dir=/home/kyz/tensorflow/main/180429/slim/drawing tensorboard --logdir=weights
zhangxinkang/tensorflow-slim-picture-classification
Use tensorflow-slim for image classification. Use the food-101 dataset to train your own image classification model.
Python