This repo provides the code for reproducing the experiments in DietCode ("Diet Code is Healthy: Simplifying Programs for Pre-Trained Models of Code") published at FSE 2022. DietCode is a program simplification method which aims for light-weighted leverage of pre-trained programming language models.
As this project conducted a empirical study on CodeBERT, we just use the same dataset as CodeBERT.
The raw data can be downloaded from CodeSearchNet and the preprocessed dataset can be downloaded by following the step on CodeBERT.
You have to fill the java_map
or python_map
in each prune.py
file in the downstream task folders.
The following code provides an example which contains the processed data of java statement attention and python statement attention respectively.
java_statement_classification_map = {
'try': 0.0029647741585358297,
'catch': 0.0025092298911411127,
'finally': 0.003843427080920313,
'break': 0.002504047667805474,
'continue': 0.0025862206572769947,
'return': 0.003415540177420338,
'throw': 0.002409465431368352,
'annotation': 0.0028472381356659383,
'while': 0.002679541985162062,
'for': 0.002537917195113055,
'if': 0.0025404393423889915,
'switch': 0.0025462886222332426,
'expression': 0.0032153782437548553,
'synchronized': 0.0023616513586135323,
'case': 0.002325461992369871,
'method': 0.004119854399696806,
'variable': 0.0024165516139185456,
'logger': 0.002416770362746685,
'setter': 0.0026460245897558608,
'getter': 0.0025480630285627617,
'function': 0.0027256693629142824,
}
python_statement_classification_map = {
'try': 0.001126432983856304,
'break': 0.000587459733777285,
'finally': 0.001424176323798515,
'continue': 0.000525201820979588,
'return': 0.003557705224077524,
'annotation': 0.001515482513624964,
'while': 0.001181877585921989,
'for': 0.001555825490959887,
'if': 0.002425228787754846,
'expression': 0.001606519048049276,
'method': 0.006854916776239256,
'variable': 0.001436622015556903,
'function': 0.001785857572541693,
}
and get the low rated attention tokens in a low_rated_tokens file which will be used to have advanced pruning after pruning the statements.
If you want to collect the attention of the tokens and statments you can add --output_attention
when training the codesearch downstream task and the ./utils/analyse.py can help you analyse the attention to generate low_rated_tokens and statment attentions.
You can change the model_type
argument from roberta to codet5 if you want to test DietCodeT5.
Also you can modify prune_strategy
to random or token to test random strategy or token_frequency strategy.
Training:
lang=java
pretrained_model=microsoft/codebert-base
python3 run_classifier.py \
--model_type roberta \
--task_name codesearch \
--do_train \
--do_eval \
--eval_all_checkpoints \
--train_file train.txt \
--dev_file valid.txt \
--max_seq_length 120 \
--per_gpu_train_batch_size 64 \
--per_gpu_eval_batch_size 64 \
--learning_rate 1e-5 \
--num_train_epochs 4 \
--output_attention \
--lang java \
--gradient_accumulation_steps 1 \
--overwrite_output_dir \
--prune_strategy slim \
--data_dir ../data/codesearch/train_valid/$(lang) \
--output_dir ./models/$(lang)/output \
--tokenizer_name microsoft/codebert-base \
--model_name_or_path $(pretrained_model)
Evaluating:
lang=java
pretrained_model=microsoft/codebert-base
idx=0
python3 run_classifier.py \
--model_type roberta \
--model_name_or_path microsoft/codebert-base \
--task_name codesearch \
--do_predict \
--output_attention \
--prune_strategy slim \
--output_dir ./models/$(lang)/slim_origin_5 \
--data_dir ../data/codesearch/test/$(lang) \
--max_seq_length 120 \
--per_gpu_train_batch_size 32 \
--per_gpu_eval_batch_size 32 \
--learning_rate 1e-5 \
--num_train_epochs 8 \
--test_file batch_$(idx).txt \
--pred_model_dir ./models/$(lang)/slim/checkpoint-best \
--tokenizer_name microsoft/codebert-base \
--test_result_dir ./results/$(lang)/slim_tiny/$(idx)_batch_result.txt
and running python3 mrr.py
to get the mrr score.
You can change the model_type
argument from RoBERTa to CodeT5 if you want to fine-tune or test from CodeT5 model.
Training:
lang=java
lr=5e-5
batch_size=24
beam_size=10
target_length=128
data_dir=../data/code2nl/CodeSearchNet
train_file=$(data_dir)/$(lang)/train.jsonl
dev_file=$(data_dir)/$(lang)/valid.jsonl
eval_steps=10
train_steps=30000
pretrained_model=microsoft/codebert-base
output_dir=model/$(lang)/slim-tiny
python3 run.py --do_train --do_eval --model_type roberta \
--tokenizer_name microsoft/codebert-base \
--model_name_or_path $(pretrained_model) --train_filename $(train_file) \
--prune_strategy slim \
--dev_filename $(dev_file) --output_dir $(output_dir) --max_source_length 100 \
--max_target_length $(target_length) --beam_size $(beam_size) --train_batch_size $(batch_size) \
--eval_batch_size $(batch_size) --learning_rate $(lr) --train_steps $(train_steps) --eval_steps $(eval_steps)
Evaluating:
lang=java
beam_size=10
batch_size=128
target_length=128
output_dir=model/$(lang)/slim-tiny
data_dir=../data/code2nl/CodeSearchNet
dev_file=$(data_dir)/$(lang)/valid.jsonl
test_file=$(data_dir)/$(lang)/test.jsonl
test_model=$output_dir/checkpoint-best-bleu/pytorch_model.bin
python3 run.py \
--do_test \
--model_type roberta \
--tokenizer_name microsoft/codebert-base \
--prune_strategy slim \
--model_name_or_path microsoft/codebert-base \
--dev_filename $(dev_file) \
--test_filename $(test_file) \
--output_dir $(output_dir) \
--max_source_length 100 \
--max_target_length $(target_length) \
--beam_size $(beam_size) \
--load_model $(output_dir)/checkpoint-best-bleu/pytorch_model.bin
--eval_batch_size $(batch_size)