/MeqNet

Primary LanguagePythonMIT LicenseMIT

MixNet

forward

for each $i\in IN$

  • $v_i=-cos(\pi z_i)v_T+sin(\pi z_i)(I_k-V_TV_T^T)v_i^{rand}$

for each $o\in OUT$

  • $g_o=\sum_j c_{oj}v_j$
  • $v_o=-g_o/||g_o||$

repeat until convergence.

sample $z_o\sim P(z_o=1)=cos^{-1}(-v_i^Tv_T)/\pi$.

backward

for each $o$ $\in$ $OUT$

  • $g_o=\sum_j c_{oj}v_j$
  • $P_o=I_k-v_ov_o^T$
  • $\frac{\partial l}{\partial v_o}=\frac{\partial l}{\partial z_o}\frac{\partial z_o}{\partial v_o}=\frac{\partial l}{\partial z_o}\frac{V_T}{\epsilon+\pi sin(\pi z_o)}$
  • $u_o=\frac{1}{||g_o||}P_o(\frac{\partial l}{\partial v_o}-\sum_{j\in out}c_{oj}u_j)$

repeat until convergence.

$\frac{\partial l}{\partial c_{oj}}=\frac{\partial l}{\partial c_{oj}}+\frac{\partial l}{\partial c_{jo}}\frac{\partial c_{jo}}{\partial c_{oj}}=-u_o^Tv_j-u_j^Tv_o$ $(o \neq j)$

$\frac{\partial l}{\partial c_{ii}}=0$

$\frac{\partial l}{\partial v_j}=-\sum_{o\in out}u_o c_{oj}$

$\frac{\partial v_j}{\partial z_j}=\pi(sin(\pi z_j)v_T+cos(\pi z_j)(I_k-v_Tv^T_T)v_j^{rand})$

$\frac{\partial l}{\partial z_j}=\frac{\partial l}{\partial z^*_j} - (\frac{\partial v_j}{\partial z_j})^T\frac{\partial l}{\partial v_j}$

run the example code:

python setup_mixnet.py install && python mixnet/models_cpp.py