version 1.0 基本完整版 run_SAE_once(sparse + de-noising + 各种activation function ) 这个是基本版,都是别人的工作。接下来版本应该是自己改进 main() |---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for train |---load_MNIST_data(images_file, labels_file, preprocess, is_show_images) // for test | |---load_MNIST_images(images_file, preprocess, is_show_images, varargin ) | | |---whitening(data) | |---load_MNIST_labels(labels_file) | |---get_SAE_option(preOption_SAE, varargin) | |---get_AE_option(preOption_AE) | |---get_BP_option(preOption_BP) |---get_BPNN_option(preOption_BPNN) | |---run_SAE_once(images_train, labels_train, images_test, labels_test, architecture, option_SAE, option_BPNN, is_disp_network, is_disp_info ) | |---train_SAE(input, output, architecture, preOption_SAE) // SAE | | |---init_parameters(architecture_AE) <----------------------------------------------------------------------+ | | |---train_AE(input, theta_AE, architecture_AE, option_AE) | | | | |---denoising_switch(input, count_AE, option_AE) | | | | |---minFunc(fun, theta_AE, options) | | | | | |---calc_AE_batch(input, theta_AE, architecture_AE, option_AE, (input_corrupted,) ~) | | | | |---predict_NN(input, architecture_AE(1:2), theta_AE(W1,b1), option_AE) | | | | | | | |------------------------------------- until train all stacked AE ------------------------------------------+ | | | | | |---init_parameters(architecture_BP, last_active_is_softmax, varargin) | | |---train_BPNN(input, output, theta_BP, architecture_BP, option_BP) | | | |---fun = @(x) calcBPBatch(input, output, x, architecture, option_BP) | | | |---minFunc(fun, theta_BP, options) | | | |---display_network(W) | | | |---predict_NN(input, architecture, theta_SAE, preOption_BPNN) | |---get_accuracy(predicted_labels, labels) | | | |---train_BPNN(input, output, theta_SAE, architecture, preOption_BPNN) // fine-tune | | | |---predict_NN(input, architecture, theta_SAE, preOption_BPNN) | |---get_accuracy(predicted_labels, labels) | | end [784 400 200 10] + ReLu + sparse(rho = 0.1, beta = 0.3) + de-noising( mode = 'On_Off', rate = 0.15 ): 98+%, 1900s ; by 郑煜伟 Ewing 2016-04
zheng-yuwei/Stacked_Autoencoder
用 MATLAB 实现深度学习网络中的 stacked auto-encoder:使用AE variant(de-noising / sparse / contractive AE)进行预训练,用BP算法进行微调
Matlab