- git clone https://github.com/ouyanghuiyu/yolo-face-with-landmark
- 使用src/retinaface2yololandmark.py脚本将retinaface的标记文件转为yolo的格式使用,
- 使用src/create_train.py 创建训练样本
python train.py --net mbv3_large_75 --backbone_weights \
./pretrained/mobilenetv3-large-0.75-9632d2a8.pth --batch-size 16
python evaluation_on_widerface.py
cd widerface_evaluate
python evaluation.py
- 在wider face val精度(单尺度输入分辨率:320*240)
方法 |
Easy |
Medium |
Hard |
Flops |
Retinaface-Mobilenet-0.25(Mxnet) |
0.745 |
0.553 |
0.232 |
|
mbv3large_1.0_yolov3(our) |
0.861 |
0.781 |
0.387 |
405M |
mbv3large_1.0_yolov3_light(our) |
0.856 |
0.770 |
0.370 |
311M |
mbv3large_0.75_yolov3(our) |
0.853 |
0.778 |
0.382 |
334M |
mbv3large_0.75_yolov3_light(our) |
0.845 |
0.766 |
0.365 |
240M |
mbv3samll_1.0_yolov3(our) |
0.798 |
0.696 |
0.3 |
185M |
mbv3small_1.0_yolov3_light(our) |
0.759 |
0.662 |
0.300 |
91M |
mbv3samll_0.75_yolov3(our) |
0.768 |
0.673 |
0.305 |
174M |
mbv3small_0.75_yolov3_light(our) |
0.754 |
0.647 |
0.291 |
80M |
- 在wider face val精度(单尺度输入分辨率:640*480)
方法 |
Easy |
Medium |
Hard |
Retinaface-Mobilenet-0.25(mxnet) |
0.879 |
0.807 |
0.481 |
mbv3large_1.0_yolov3(our) |
0.900 |
0.882 |
0.707 |
mbv3large_1.0_yolov3_light(our) |
0.900 |
0.874 |
0.683 |
mbv3large_0.75_yolov3(our) |
0.886 |
0.871 |
0.694 |
mbv3large_0.75_yolov3_light(our) |
0.881 |
0.862 |
0.678 |
mbv3samll_1.0_yolov3(our) |
0.856 |
0.827 |
0.602 |
mbv3small_1.0_yolov3_light(our) |
0.847 |
0.807 |
0.578 |
mbv3samll_0.75_yolov3(our) |
0.841 |
0.815 |
0.584 |
mbv3small_0.75_yolov3_light(our) |
0.832 |
0.796 |
0.553 |
ps: 测试的时候,长边为320 或者 640 ,图像等比例缩放