- (book) Dynamic Programming, Bellman R. (1957).
- (book) Dynamic Programming and Optimal Control, Volumes 1 and 2, Bertsekas D. (1995).
- (book) Markov Decision Processes - Discrete Stochastic Dynamic Programming, Puterman M. (1995).
ExpectiMinimax
Optimal strategy in games with chance nodes, Melkรณ E., Nagy B. (2007).Sparse sampling
A sparse sampling algorithm for near-optimal planning in large Markov decision processes, Kearns M. et al. (2002).MCTS
Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search, Rรฉmi Coulom, SequeL (2006).UCT
Bandit based Monte-Carlo Planning, Kocsis L., Szepesvรกri C. (2006).- Bandit Algorithms for Tree Search, Coquelin P-A., Munos R. (2007).
OPD
Optimistic Planning for Deterministic Systems, Hren J., Munos R. (2008).OLOP
Open Loop Optimistic Planning, Bubeck S., Munos R. (2010).LGP
Logic-Geometric Programming: An Optimization-Based Approach to Combined Task and Motion Planning, Toussaint M. (2015). ๐๏ธAlphaGo
Mastering the game of Go with deep neural networks and tree search, Silver D. et al. (2016).AlphaGo Zero
Mastering the game of Go without human knowledge, Silver D. et al. (2017).AlphaZero
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm, Silver D. et al. (2017).TrailBlazer
Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning, Grill J. B., Valko M., Munos R. (2017).MCTSnets
Learning to search with MCTSnets, Guez A. et al. (2018).ADI
Solving the Rubik's Cube Without Human Knowledge, McAleer S. et al. (2018).OPC/SOPC
Continuous-action planning for discounted in๏ฌnite-horizon nonlinear optimal control with Lipschitz values, Busoniu L., Pall E., Munos R. (2018).
- (book) Constrained Control and Estimation, Goodwin G. (2005).
PIยฒ
A Generalized Path Integral Control Approach to Reinforcement Learning, Theodorou E. et al. (2010).PIยฒ-CMA
Path Integral Policy Improvement with Covariance Matrix Adaptation, Stulp F., Sigaud O. (2010).iLQG
A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems, Todorov E. (2005).iLQG+
Synthesis and stabilization of complex behaviors through online trajectory optimization, Tassa Y. (2012).
- (book) Model Predictive Control, Camacho E. (1995).
- (book) Predictive Control With Constraints, Maciejowski J. M. (2002).
- Linear Model Predictive Control for Lane Keeping and Obstacle Avoidance on Low Curvature Roads, Turri V. et al. (2013).
MPCC
Optimization-based autonomous racing of 1:43 scale RC cars, Liniger A. et al. (2014). ๐๏ธ | ๐๏ธMIQP
Optimal trajectory planning for autonomous driving integrating logical constraints: An MIQP perspective, Qian X., Altchรฉ F., Bender P., Stiller C. de La Fortelle A. (2016).
- Minimax analysis of stochastic problems, Shapiro A., Kleywegt A. (2002).
Robust DP
Robust Dynamic Programming, Iyengar G. (2005).- Robust Planning and Optimization, Laumanns M. (2011). (lecture notes)
- Robust Markov Decision Processes, Wiesemann W., Kuhn D., Rustem B. (2012).
Coarse-Id
On the Sample Complexity of the Linear Quadratic Regulator, Dean S., Mania H., Matni N., Recht B., Tu S. (2017).Tube-MPPI
Robust Sampling Based Model Predictive Control with Sparse Objective Information, Williams G. et al. (2018). ๐๏ธ
- A Comprehensive Survey on Safe Reinforcement Learning, Garcรญa J., Fernรกndez F. (2015).
RA-QMDP
Risk-averse Behavior Planning for Autonomous Driving under Uncertainty, Naghshvar M. et al. (2018).
ICS
Will the Driver Seat Ever Be Empty?, Fraichard T. (2014).RSS
On a Formal Model of Safe and Scalable Self-driving Cars, Shalev-Shwartz S. et al. (2017).HJI-reachability
Safe learning for control: Combining disturbance estimation, reachability analysis and reinforcement learning with systematic exploration, Heidenreich C. (2017).BFTQ
A Fitted-Q Algorithm for Budgeted MDPs, Carrara N. et al. (2018).MPC-HJI
On Infusing Reachability-Based Safety Assurance within Probabilistic Planning Frameworks for Human-Robot Vehicle Interactions, Leung K. et al. (2018).LTL-RL
Reinforcement Learning with Probabilistic Guarantees for Autonomous Driving, Bouton M. et al. (2019).- Safe Reinforcement Learning with Scene Decomposition for Navigating Complex Urban Environments, Bouton M. et al. (2019).
- Simulation of Controlled Uncertain Nonlinear Systems, Tibken B., Hofer E. (1995).
- Trajectory computation of dynamic uncertain systems, Adrot O., Flaus J-M. (2002).
- Simulation of Uncertain Dynamic Systems Described By Interval Models: a Survey, Puig V. et al. (2005).
- Design of interval observers for uncertain dynamical systems, Efimov D., Raรฏssi T. (2016).
UCB1/UCB2
Finite-time Analysis of the Multiarmed Bandit Problem, Auer P., Cesa-Bianchi N., Fischer P. (2002).GP-UCB
Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design, Srinivas N., Krause A., Kakade S., Seeger M. (2009).kl-UCB
The KL-UCB Algorithm for Bounded Stochastic Bandits and Beyond, Garivier A., Cappรฉ O. (2011).KL-UCB
Kullback-Leibler Upper Confidence Bounds for Optimal Sequential Allocation, Cappรฉ O. et al. (2013).LUCB
PAC Subset Selection in Stochastic Multi-armed Bandits, Kalyanakrishnan S. et al. (2012).POO
Black-box optimization of noisy functions with unknown smoothness, Grill J-B., Valko M., Munos R. (2015).Track-and-Stop
Optimal Best Arm Identification with Fixed Confidence, Garivier A., Kaufmann E. (2016).M-LUCB/M-Racing
Maximin Action Identification: A New Bandit Framework for Games, Garivier A., Kaufmann E., Koolen W. (2016).LUCB-micro
Structured Best Arm Identification with Fixed Confidence, Huang R. et al. (2017).- Bayesian Optimization in AlphaGo, Chen Y. et al. (2018)
- Reinforcement learning: A survey, Kaelbling L. et al. (1996).
NFQ
Neural fitted Q iteration - First experiences with a data efficient neural Reinforcement Learning method, Riedmiller M. (2005).DQN
Playing Atari with Deep Reinforcement Learning, Mnih V. et al. (2013). ๐๏ธDDQN
Deep Reinforcement Learning with Double Q-learning, van Hasselt H., Silver D. et al. (2015).DDDQN
Dueling Network Architectures for Deep Reinforcement Learning, Wang Z. et al. (2015). ๐๏ธPDDDQN
Prioritized Experience Replay, Schaul T. et al. (2015).NAF
Continuous Deep Q-Learning with Model-based Acceleration, Gu S. et al. (2016).Rainbow
Rainbow: Combining Improvements in Deep Reinforcement Learning, Hessel M. et al. (2017).Ape-X DQfD
Observe and Look Further: Achieving Consistent Performance on Atari, Pohlen T. et al. (2018). ๐๏ธ
REINFORCE
Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning, Williams R. (1992).Natural Gradient
A Natural Policy Gradient, Kakade S. (2002).- Policy Gradient Methods for Robotics, Peters J., Schaal S. (2006).
TRPO
Trust Region Policy Optimization, Schulman J. et al. (2015). ๐๏ธPPO
Proximal Policy Optimization Algorithms, Schulman J. et al. (2017). ๐๏ธDPPO
Emergence of Locomotion Behaviours in Rich Environments, Heess N. et al. (2017). ๐๏ธ
AC
Policy Gradient Methods for Reinforcement Learning with Function Approximation, Sutton R. et al. (1999).NAC
Natural Actor-Critic, Peters J. et al. (2005).DPG
Deterministic Policy Gradient Algorithms, Silver D. et al. (2014).DDPG
Continuous Control With Deep Reinforcement Learning, Lillicrap T. et al. (2015). ๐๏ธ 1 | 2 | 3 | 4MACE
Terrain-Adaptive Locomotion Skills Using Deep Reinforcement Learning, Peng X., Berseth G., van de Panne M. (2016). ๐๏ธ | ๐๏ธA3C
Asynchronous Methods for Deep Reinforcement Learning, Mnih V. et al 2016. ๐๏ธ 1 | 2 | 3SAC
Soft Actor-Critic : Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, Haarnoja T. et al. (2018). ๐๏ธ
CEM
Learning Tetris Using the Noisy Cross-Entropy Method, Szita I., Lรถrincz A. (2006). ๐๏ธCMAES
Completely Derandomized Self-Adaptation in Evolution Strategies, Hansen N., Ostermeier A. (2001).NEAT
Evolving Neural Networks through Augmenting Topologies, Stanley K. (2002). ๐๏ธ
Dyna
Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming, Sutton R. (1990).UCRL2
Near-optimal Regret Bounds for Reinforcement Learning, Jaksch T. (2010).PILCO
PILCO: A Model-Based and Data-Efficient Approach to Policy Search, Deisenroth M., Rasmussen C. (2011). (talk)DBN
Probabilistic MDP-behavior planning for cars, Brechtel S. et al. (2011).GPS
End-to-End Training of Deep Visuomotor Policies, Levine S. et al. (2015). ๐๏ธDeepMPC
DeepMPC: Learning Deep Latent Features for Model Predictive Control, Lenz I. et al. (2015). ๐๏ธSVG
Learning Continuous Control Policies by Stochastic Value Gradients, Heess N. et al. (2015). ๐๏ธ- Optimal control with learned local models: Application to dexterous manipulation, Kumar V. et al. (2016). ๐๏ธ
BPTT
Long-term Planning by Short-term Prediction, Shalev-Shwartz S. et al. (2016). ๐๏ธ 1 | 2- Deep visual foresight for planning robot motion, Finn C., Levine S. (2016). ๐๏ธ
VIN
Value Iteration Networks, Tamar A. et al (2016). ๐๏ธVPN
Value Prediction Network, Oh J. et al. (2017).- An LSTM Network for Highway Trajectory Prediction, Altchรฉ F., de La Fortelle A. (2017).
DistGBP
Model-Based Planning with Discrete and Continuous Actions, Henaff M. et al. (2017). ๐๏ธ 1 | 2- Prediction and Control with Temporal Segment Models, Mishra N. et al. (2017).
Predictron
The Predictron: End-To-End Learning and Planning, Silver D. et al. (2017). ๐๏ธMPPI
Information Theoretic MPC for Model-Based Reinforcement Learning, Williams G. et al. (2017). ๐๏ธ- Learning Real-World Robot Policies by Dreaming, Piergiovanni A. et al. (2018).
- Coupled Longitudinal and Lateral Control of a Vehicle using Deep Learning, Devineau G., Polack P., Alchtรฉ F., Moutarde F. (2018) ๐๏ธ
PlaNet
Learning Latent Dynamics for Planning from Pixels, Hafner et al. (2018). ๐๏ธ
- Combating Reinforcement Learning's Sisyphean Curse with Intrinsic Fear, Lipton Z. et al. (2016).
HER
Hindsight Experience Replay, Andrychowicz M. et al. (2017). ๐๏ธVHER
Visual Hindsight Experience Replay, Sahni H. et al. (2019).RND
Exploration by Random Network Distillation, Burda Y. et al. (OpenAI) (2018). ๐๏ธGo-Explore
Go-Explore: a New Approach for Hard-Exploration Problems, Ecoffet A. et al. (Uber) (2018). ๐๏ธ
- Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning, Sutton R. et al. (1999).
- Intrinsically motivated learning of hierarchical collections of skills, Barto A. et al. (2004).
- Learning and Transfer of Modulated Locomotor Controllers, Heess N. et al. (2016). ๐๏ธ
- Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving, Shalev-Shwartz S. et al. (2016).
FuNs
FeUdal Networks for Hierarchical Reinforcement Learning, Vezhnevets A. et al. (2017).- Combining Neural Networks and Tree Search for Task and Motion Planning in Challenging Environments, Paxton C. et al. (2017). ๐๏ธ
DeepLoco
DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning , Peng X. et al. (2017). ๐๏ธ | ๐๏ธ- Hierarchical Policy Design for Sample-Efficient Learning of Robot Table Tennis Through Self-Play, Mahjourian R. et al (2018). ๐๏ธ
PBVI
Point-based Value Iteration: An anytime algorithm for POMDPs, Pineau J. et al. (2003).cPBVI
Point-Based Value Iteration for Continuous POMDPs, Porta J. et al. (2006).POMCP
Monte-Carlo Planning in Large POMDPs, Silver D., Veness J. (2010).- A POMDP Approach to Robot Motion Planning under Uncertainty, Du Y. et al. (2010).
- Solving Continuous POMDPs: Value Iteration with Incremental Learning of an Efficient Space Representation, Brechtel S. et al. (2013).
- Probabilistic Decision-Making under Uncertainty for Autonomous Driving using Continuous POMDPs, Brechtel S. et al. (2014).
MOMDP
Intention-Aware Motion Planning, Bandyopadhyay T. et al. (2013).- The value of inferring the internal state of traffic participants for autonomous freeway driving, Sunberg Z. et al. (2017).
- Belief State Planning for Autonomously Navigating Urban Intersections, Bouton M., Cosgun A., Kochenderfer M. (2017).
IT&E
Robots that can adapt like animals, Cully A., Clune J., Tarapore D., Mouret J-B. (2014). ๐๏ธ- Virtual to Real Reinforcement Learning for Autonomous Driving, Pan X. et al. (2017). ๐๏ธ
- Sim-to-Real: Learning Agile Locomotion For Quadruped Robots, Tan J. et al. (2018). ๐๏ธ
ME-TRPO
Model-Ensemble Trust-Region Policy Optimization, Kurutach T. et al. (2018). ๐๏ธ- Kickstarting Deep Reinforcement Learning, Schmitt S. et al. (2018).
- Learning Dexterous In-Hand Manipulation, OpenAI (2018). ๐๏ธ
- Learning agile and dynamic motor skills for legged robots, Hwangbo J. et al. (ETH Zurich / Intel ISL) (2019). ๐๏ธ
- Robust Recovery Controller for a Quadrupedal Robot using Deep Reinforcement Learning, Lee J., Hwangbo J., Hutter M. (ETH Zurich RSL) (2019)
IT&E
Learning and adapting quadruped gaits with the "Intelligent Trial & Error" algorithm, Dalin E., Desreumaux P., Mouret J-B. (2019). ๐๏ธ
- Autonomous Agents Modelling Other Agents: A Comprehensive Survey and Open Problems, Albrecht S., Stone P. (2017).
MILP
Time-optimal coordination of mobile robots along specified paths, Altchรฉ F. et al. (2016). ๐๏ธMIQP
An Algorithm for Supervised Driving of Cooperative Semi-Autonomous Vehicles, Altchรฉ F. et al. (2017). ๐๏ธSA-CADRL
Socially Aware Motion Planning with Deep Reinforcement Learning, Chen Y. et al. (2017). ๐๏ธ- Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: Theory and experiment, Galceran E. et al. (2017).
- Online decision-making for scalable autonomous systems, Wray K. et al. (2017).
MAgent
MAgent: A Many-Agent Reinforcement Learning Platform for Artificial Collective Intelligence, Zheng L. et al. (2017). ๐๏ธ- Cooperative Motion Planning for Non-Holonomic Agents with Value Iteration Networks, Rehder E. et al. (2017).
MPPO
Towards Optimally Decentralized Multi-Robot Collision Avoidance via Deep Reinforcement Learning, Long P. et al. (2017). ๐๏ธCOMA
Counterfactual Multi-Agent Policy Gradients, Foerster J. et al. (2017).FTW
Human-level performance in first-person multiplayer games with population-based deep reinforcement learning, Jaderberg M. et al. (2018). ๐๏ธ
- Variable Resolution Discretization in Optimal Control, Munos R., Moore A. (2002). ๐๏ธ
DeepDriving
DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving, Chen C. et al. (2015). ๐๏ธ- On the Sample Complexity of End-to-end Training vs. Semantic Abstraction Training, Shalev-Shwartz S. et al. (2016).
- Learning sparse representations in reinforcement learning with sparse coding, Le L., Kumaraswamy M., White M. (2017).
- World Models, Ha D., Schmidhuber J. (2018). ๐๏ธ
- Learning to Drive in a Day, Kendall A. et al. (2018). ๐๏ธ
MERLIN
Unsupervised Predictive Memory in a Goal-Directed Agent, Wayne G. et al. (2018). ๐๏ธ 1 | 2 | 3 | 4 | 5 | 6- Variational End-to-End Navigation and Localization, Amini A. et al. (2018). ๐๏ธ
- Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks, Lee M. et al. (2018). ๐๏ธ
- Is the Bellman residual a bad proxy?, Geist M., Piot B., Pietquin O. (2016).
- Deep Reinforcement Learning that Matters, Henderson P. et al. (2017).
- Automatic Bridge Bidding Using Deep Reinforcement Learning, Yeh C. and Lin H. (2016).
- Shared Autonomy via Deep Reinforcement Learning, Reddy S. et al. (2018). ๐๏ธ
- Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review, Levine S. (2018).
- The Value Function Polytope in Reinforcement Learning, Dadashi R. et al. (2019).
QMDP-RCNN
Reinforcement Learning via Recurrent Convolutional Neural Networks, Shankar T. et al. (2016). (talk)DQfD
Learning from Demonstrations for Real World Reinforcement Learning, Hester T. et al. (2017). ๐๏ธ- Find Your Own Way: Weakly-Supervised Segmentation of Path Proposals for Urban Autonomy, Barnes D., Maddern W., Posner I. (2016). ๐๏ธ
GAIL
Generative Adversarial Imitation Learning, Ho J., Ermon S. (2016).- From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots, Pfeiffer M. et al. (2017). ๐๏ธ
Branched
End-to-end Driving via Conditional Imitation Learning, Codevilla F. et al. (2017). ๐๏ธ | talkUPN
Universal Planning Networks, Srinivas A. et al. (2018). ๐๏ธDeepMimic
DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills, Peng X. B. et al. (2018). ๐๏ธR2P2
Deep Imitative Models for Flexible Inference, Planning, and Control, Rhinehart N. et al. (2018). ๐๏ธ
- ALVINN, an autonomous land vehicle in a neural network, Pomerleau D. (1989).
- End to End Learning for Self-Driving Cars, Bojarski M. et al. (2016). ๐๏ธ
- End-to-end Learning of Driving Models from Large-scale Video Datasets, Xu H., Gao Y. et al. (2016). ๐๏ธ
- End-to-End Deep Learning for Steering Autonomous Vehicles Considering Temporal Dependencies, Eraqi H. et al. (2017).
- Driving Like a Human: Imitation Learning for Path Planning using Convolutional Neural Networks, Rehder E. et al. (2017).
- Imitating Driver Behavior with Generative Adversarial Networks, Kuefler A. et al. (2017).
PS-GAIL
Multi-Agent Imitation Learning for Driving Simulation, Bhattacharyya R. et al. (2018). ๐๏ธ
Projection
Apprenticeship learning via inverse reinforcement learning, Abbeel P., Ng A. (2004).MMP
Maximum margin planning, Ratliff N. et al. (2006).BIRL
Bayesian inverse reinforcement learning, Ramachandran D., Amir E. (2007).MEIRL
Maximum Entropy Inverse Reinforcement Learning, Ziebart B. et al. (2008).LEARCH
Learning to search: Functional gradient techniques for imitation learning, Ratliff N., Siver D. Bagnell A. (2009).CIOC
Continuous Inverse Optimal Control with Locally Optimal Examples, Levine S., Koltun V. (2012). ๐๏ธMEDIRL
Maximum Entropy Deep Inverse Reinforcement Learning, Wulfmeier M. (2015).GCL
Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, Finn C. et al. (2016). ๐๏ธRIRL
Repeated Inverse Reinforcement Learning, Amin K. et al. (2017).- Bridging the Gap Between Imitation Learning and Inverse Reinforcement Learning, Piot B. et al. (2017).
- Apprenticeship Learning for Motion Planning, with Application to Parking Lot Navigation, Abbeel P. et al. (2008).
- Navigate like a cabbie: Probabilistic reasoning from observed context-aware behavior, Ziebart B. et al. (2008).
- Planning-based Prediction for Pedestrians, Ziebart B. et al. (2009). ๐๏ธ
- Learning for autonomous navigation, Bagnell A. et al. (2010).
- Learning Autonomous Driving Styles and Maneuvers from Expert Demonstration, Silver D. et al. (2012).
- Learning Driving Styles for Autonomous Vehicles from Demonstration, Kuderer M. et al. (2015).
- Learning to Drive using Inverse Reinforcement Learning and Deep Q-Networks, Sharifzadeh S. et al. (2016).
- Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments, Wulfmeier M. (2016). ๐๏ธ
- Planning for Autonomous Cars that Leverage Effects on Human Actions, Sadigh D. et al. (2016).
- A Learning-Based Framework for Handling Dilemmas in Urban Automated Driving, Lee S., Seo S. (2017).
- Learning Trajectory Prediction with Continuous Inverse Optimal Control via Langevin Sampling of Energy-Based Models, Xu Y. et al. (2019).
Dijkstra
A Note on Two Problems in Connexion with Graphs, Dijkstra E. W. (1959).A*
A Formal Basis for the Heuristic Determination of Minimum Cost Paths , Hart P. et al. (1968).- Planning Long Dynamically-Feasible Maneuvers For Autonomous Vehicles, Likhachev M., Ferguson D. (2008).
- Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenet Frame, Werling M., Kammel S. (2010). ๐๏ธ
- 3D perception and planning for self-driving and cooperative automobiles, Stiller C., Ziegler J. (2012).
- Motion Planning under Uncertainty for On-Road Autonomous Driving, Xu W. et al. (2014).
- Monte Carlo Tree Search for Simulated Car Racing, Fischer J. et al. (2015). ๐๏ธ
RRT*
Sampling-based Algorithms for Optimal Motion Planning, Karaman S., Frazzoli E. (2011). ๐๏ธLQG-MP
LQG-MP: Optimized Path Planning for Robots with Motion Uncertainty and Imperfect State Information, van den Berg J. et al. (2010).- Motion Planning under Uncertainty using Differential Dynamic Programming in Belief Space, van den Berg J. et al. (2011).
- Rapidly-exploring Random Belief Trees for Motion Planning Under Uncertainty, Bry A., Roy N. (2011).
PRM-RL
PRM-RL: Long-range Robotic Navigation Tasks by Combining Reinforcement Learning and Sampling-based Planning, Faust A. et al. (2017).
- Trajectory planning for Bertha - A local, continuous method, Ziegler J. et al. (2014).
- Learning Attractor Landscapes for Learning Motor Primitives, Ijspeert A. et al. (2002).
PF
Real-time obstacle avoidance for manipulators and mobile robots, Khatib O. (1986).VFH
The Vector Field Histogram - Fast Obstacle Avoidance For Mobile Robots, Borenstein J. (1991).VFH+
VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots, Ulrich I., Borenstein J. (1998).Velocity Obstacles
Motion planning in dynamic environments using velocity obstacles, Fiorini P., Shillert Z. (1998).
- A Review of Motion Planning Techniques for Automated Vehicles, Gonzรกlez D. et al. (2016).
- A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, Paden B. et al. (2016).
- Autonomous driving in urban environments: Boss and the Urban Challenge, Urmson C. et al. (2008).
- The MIT-Cornell collision and why it happened, Fletcher L. et al. (2008).
- Making bertha drive-an autonomous journey on a historic route, Ziegler J. et al. (2014).