/VIBNet

Compressing Neural Networks using the Variational Information Bottleneck

Primary LanguagePythonMIT LicenseMIT

VIBNet

This repository provides codes to reproduce the major experiments in the paper Compressing Neural Networks using the Variational Information Bottleneck, (ICML 2018).

If you find this code useful in your research you could cite

@inproceedings{dai2018vib,
    title={Compressing Neural Networks using the Variational Information Bottleneck},
    author={Dai, Bin and Zhu, Chen and Guo, Baining and Wipf, David},
    booktitle={Proceedings of the 35th International Conference on Machine Learning (ICML 2018)},
    year={2018}
}

Update on Oct 18, 2019

Fixed some compatibility issue with PyTorch 1.2.0.

Prerequisites

The experiments can be reproduced with PyTorch 0.3.1 and CUDA 9.0 on Ubuntu 16.04. Here is one approach to set up:

  1. Install Anaconda2 (optional).
mkdir tmp && cd tmp
wget https://repo.anaconda.com/archive/Anaconda2-5.1.0-Linux-x86_64.sh && bash Anaconda2-5.1.0-Linux-x86_64.sh
  1. Install PyTorch.
# Select the correct version according to your environment. 
pip install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp27-cp27mu-linux_x86_64.whl
pip install torchvision 
  1. Install TensorboardX for visualization.
pip install tensorboardx
  1. Download the pretrained VGG models and unzip under this directory via Google Drive or Baidu Pan.

Run

Tabel 3 part 1

python ib_vgg_train.py --gpu 0 --batch-norm --resume-vgg-pt baseline/cifar10/checkpoint_299_nocrop.tar --ban-crop --opt adam --cfg D4 --epochs 300 --lr 1.4e-3 --weight-decay 5e-5 --kl-fac 1.4e-5 --save-dir ib_vgg_chk/D4

Table 3 part 2

python ib_vgg_train.py --data-set cifar10 --gpu 0 --batch-norm --resume-vgg-vib baseline/cifar10/D6_600/last_epoch.pth --opt adam --cfg D6 --epochs 300 --lr 1e-3 --weight-decay 5e-5 --kl-fac 3e-5 --save-dir ib_vgg_chk/D6_600

Table 3 part 3

python ib_vgg_train.py --data-set cifar10 --gpu 0 --batch-norm --resume-vgg-vib baseline/cifar10/G5_400/last_epoch.pth --opt adam --cfg G5 --epochs 300 --lr 1e-3 --weight-decay 5E-5 --kl-fac 1e-5 --save-dir ib_vgg_chk/G5-400

Table 4 part 1

python ib_vgg_train.py --data-set cifar100 --gpu 0 --batch-norm --resume-vgg-vib baseline/cifar100/vgg-cifar100-pretrain.pth --opt adam --cfg G --epochs 300 --lr 1e-3 --weight-decay 1.2e-4 --kl-fac 1e-5 --ban-crop --ban-flip --save-dir ib_vgg_chk/cifar100-G

Table 4 part 2

python ib_vgg_train.py --data-set cifar100 --gpu 0 --batch-norm --resume-vgg-vib baseline/cifar100/crop_300/last_epoch.pth --opt adam --cfg G5 --epochs 300 --lr 1e-3 --weight-decay 5E-5 --kl-fac 1.5e-5 --save-dir ib_vgg_chk/cifar100-crop-300