/pytorch-handbook

pytorch handbook是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门,其中包含的Pytorch教程全部通过测试保证可以成功运行

Primary LanguageJupyter Notebook

PyTorch 中文手册 (pytorch handbook)

pytorch

书籍介绍

这是一本开源的书籍,目标是帮助那些希望和使用PyTorch进行深度学习开发和研究的朋友快速入门。

由于本人水平有限,在写此教程的时候参考了一些网上的资料,在这里对他们表示敬意,我会在每个引用中附上原文地址,方便大家参考。

深度学习的技术在飞速的发展,同时PyTorch也在不断更新,且本人会逐步完善相关内容。

版本说明

由于PyTorch版本更迭,教程的版本会与PyTorch版本,保持一致。

12月8日PyTorch已经发布1.0的稳定版。 API的改动不是很大,本教程已经通过测试,保证能够在1.0中正常运行。 不过目前看影响不大,因为毕竟内容还不多。 v0.4.1已经新建了分支作为存档,并且该不会再进行更新了。

官方1.0说明 主要改动中文说明

目录

第一章: pytorch入门

  1. Pytorch 简介
  2. Pytorch环境搭建
  3. PyTorch 深度学习:60分钟快速入门 (官方)
  4. 相关资源介绍

第二章 基础

第一节 PyTorch 基础

  1. 张量
  2. 自动求导
  3. 神经网络包nn和优化器optm
  4. 数据的加载和预处理

第二节 深度学习基础及数学原理

深度学习基础及数学原理

第三节 神经网络简介

神经网络简介

第四节 卷积神经网络

卷积神经网络

第五节 循环神经网络

循环神经网络

第三章 实践

第一节 logistic回归二元分类

logistic回归二元分类

第二节 CNN:MNIST数据集手写数字识别

CNN:MNIST数据集手写数字识别

第三节 RNN实例:通过Sin预测Cos

RNN实例:通过Sin预测Cos

第四章 提高

第一节 Fine-tuning

Fine-tuning

第二节 可视化

visdom

tensorboardx

第三节 fastai

第四节 数据处理技巧

第五节 并行计算

第五章 应用

第一节 Kaggle介绍

第二节 结构化数据

第三节 计算机视觉

第四节 自然语言处理

第五节 协同过滤

第六章 资源

License

本作品采用知识共享署名-非商业性使用-相同方式共享 3.0 **大陆许可协议进行许可