/Grounded-SAM

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

Grounded-Segment-Anything

Installation

The code requires python>=3.8, as well as pytorch>=1.7 and torchvision>=0.8. Please follow the instructions here to install both PyTorch and TorchVision dependencies. Installing both PyTorch and TorchVision with CUDA support is strongly recommended.

Install Segment Anything:

python -m pip install -e segment_anything

Install Grounding DINO:

python -m pip install -e GroundingDINO

Install diffusers:

pip install --upgrade diffusers[torch]

The following optional dependencies are necessary for mask post-processing, saving masks in COCO format, the example notebooks, and exporting the model in ONNX format. jupyter is also required to run the example notebooks.

pip install opencv-python pycocotools matplotlib onnxruntime onnx ipykernel

More details can be found in install segment anything and install GroundingDINO

Download Models

  • Download the checkpoint for Segment Anything and Grounding Dino: (put *.pth into models folder)
cd Grounded-SAM
mkdir models && cd models

wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
wget https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth

Run

Just edit data_dir and text_prompt in run.py, and the output dir is dafault to ./output

python run.py

Acknowledgements

Citation

If you find this project helpful for your research, please consider citing the following BibTeX entry.

@article{kirillov2023segany,
  title={Segment Anything}, 
  author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross},
  journal={arXiv:2304.02643},
  year={2023}
}

@inproceedings{ShilongLiu2023GroundingDM,
  title={Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection},
  author={Shilong Liu and Zhaoyang Zeng and Tianhe Ren and Feng Li and Hao Zhang and Jie Yang and Chunyuan Li and Jianwei Yang and Hang Su and Jun Zhu and Lei Zhang},
  year={2023}
}