/DRDet

基于渐进式学习的轻量级无人机目标检测

Primary LanguagePython

DRDet

Results on Visdrone2019

Method Para(M) mAP $AP_{50}$ $AP_{75}$ $AP_{s}$ $AP_{m}$ $AP_{l}$
ATSS 12.72 22.14 13.15 4.27 19.46 32.24
Cascade RCNN 14.43 22.13 15.53 3.28 25.24 37.34
Faster RCNN* 14.61 23.21 16.24 3.53 26.36 35.51
TOOD 14.63 24.82 14.49 5.67 21.85 33.81
FCOS 16.19 28.34 16.63 6.93 22.37 31.61
YOLOXs 8.9 18.50 32.7 18.4 10.0 28.1 41.4
YOLOv5s 7.2 19.10 34.4
YOLOv8s 11.2 24.21 41.43
NaNoDet Plus 7.8 26.81 44.10 27.52 16.21 41.23 51.09
DRDet (ours) 10.9 28.32 45.84 29.03 17.38 42.66 50.91

模型在2080Ti上的推理耗时 FP32/wo TensorRT

模型 平均推理耗时(秒)
NaNoDet Plus 1.5x 0.0185
ours 0.0544

Requirements

  • Linux or MacOS

  • CUDA >= 10.0

  • Python >= 3.6

  • Pytorch >= 1.7

  • experimental support Windows (Notice: Windows not support distributed training before pytorch1.7)

  • Install requirements

pip install -r requirements.txt
  • Setup NanoDet
python setup.py develop

How to Train

  1. Prepare dataset convert your dataset annotations to MS COCO format

  2. Start training

    Baseline and DRDet are both now using pytorch lightning for training.

    For both single-GPU or multiple-GPUs, run:

    python tools/train.py CONFIG_FILE_PATH
  3. SAHI

    slice dataset with coco format

    >> pip install sahi
    >> sahi coco slice --image_dir dir/to/images --dataset_json_path dataset.json

    slice the given images and COCO formatted annotations and export them to given output folder directory.

    Specify slice height/width size as --slice_size 512.

    Specify slice overlap ratio for height/width size as --overlap_ratio 0.2.

    If you want to ignore images with annotations set it add --ignore_negative_samples argument.

  4. Test and Vis

    python demo/demo.py --demo image --config ./config/nanodet-plus-m-1.5x_416.yml --model ./nanodet-plus-m-1.5x_416_checkpoint.ckpt --path ./inferimgs