/lora_from_scratch

Implements Low-Rank Adaptation(LoRA) Finetuning from scratch

Primary LanguageJupyter NotebookMIT LicenseMIT

LoRA from Scratch

Implements Low-Rank Adaptation(LoRA) Finetuning from scratch.

This notebook was a small project to learn more about LoRA finetuning. It implements LoRA from scratch primarily using the paper as a guide. I found that on a simple model, I could achieve 97.9% of the performance of normal finetuning with as little as 7.7% of the trainable weights compared to the traditional approach, which is pretty incredible!

Experimental Results

model approx. number of trainable parameters test accuracy percent trainable parameters relative to baseline percent test accuracy relative to baseline
baseline - whole model finetune 54700 0.984 N/A N/A
LoRA rank = 1 1000 0.875 1.8% 88.9%
LoRA rank = 2 2100 0.931 3.8% 94.6%
LoRA rank = 4 4200 0.964 7.7% 97.9%
LoRA rank= 8 8400 0.971 15.4% 98.6%
LoRA rank = 16 16700 0.977 30.5% 99.2%
LoRA rank = 32 33400 0.980 61.1% 99.5%
LoRA rank = 64 66900 0.980 122% 99.6%

Alt text

Model Implementation

Simplified exerpt from the notebook with a bit of the model:

class LitLoRA(L.LightningModule):
    def __init__(self):
        super().__init__()

        # Define layers for model
        self.l1 = nn.Linear(input_size, hidden_size)
        self.l2 = nn.Linear(hidden_size, hidden_size)
        self.l3 = nn.Linear(hidden_size, self.num_classes)
  
        self.dropout = nn.Dropout(0.1)
        self.relu = nn.ReLU()
  
        # Define lora hyperparameters
        self.lora_rank = 4 # The rank 'r' for the low-rank adaptation
        self.lora_alpha = 1 # lora scaling factor
        
        # layer 1 lora layers
        self.l1_lora_A = nn.Parameter(torch.empty(channels * width * height, self.lora_rank))
        self.l1_lora_B = nn.Parameter(torch.empty(self.lora_rank, hidden_size))
  
        # layer 2 lora layers
        self.l2_lora_A =  nn.Parameter(torch.empty(hidden_size, self.lora_rank))
        self.l2_lora_B = nn.Parameter(torch.empty(self.lora_rank, hidden_size))
  
        # layer 3 lora layers
        self.l3_lora_A = nn.Parameter(torch.empty(hidden_size, self.lora_rank))
        self.l3_lora_B = nn.Parameter(torch.empty(self.lora_rank, self.num_classes))


        # Initialization for lora layers 
        for n,p in self.named_parameters():
            if 'lora' in n:
                if n[-1]=='A':
                    nn.init.kaiming_uniform_(p, a=math.sqrt(5))
                elif n[-1]=='B':
                    nn.init.zeros_(p)

        # freeze non lora weights
        for n,p in self.named_parameters():
            if 'lora' not in n:
                p.requires_grad = False

    def lora_linear(self, x, layer, lora_A, lora_B):
        # does the work of combining outputs from normal layer and lora layer for x
        h = layer(x)
        h += x@(lora_A @ lora_B)*self.lora_alpha
        return h
        
    def forward(self, x):
        # preprocessing
        x = torch.flatten(x,1)
        
        # layer 1 (input size, hidden size)
        x = self.lora_linear(x, self.l1, self.l1_lora_A, self.l1_lora_B)
        x = self.relu(x)
        x = self.dropout(x)

        # layer 2 (hidden size, hidden size)
        x = self.lora_linear(x, self.l2, self.l2_lora_A, self.l2_lora_B)
        x = self.relu(x)
        x = self.dropout(x)

        #layer 3 (hidden size, self.num_classes)
        x = self.lora_linear(x, self.l3, self.l3_lora_A, self.l3_lora_B)
                  
        return F.log_softmax(x, dim=1)