This repository contains a collection of code and scripts used in the paper A point mutation in recC associated with subclonal replacement of carbapenem-resistant Klebsiella pneumoniae ST11 in China (DOI: 10.1038/s41467-023-38061-z) by Kai Zhou, Chun-Xu Xue et al..
Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a canonical mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further bolstered by a selective hypervirulence sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is driven by a repertoire of genomic alterations convergent in a selective population with evolutionary advantages.
The links below the sub-headings lead to the scripts needed for the corresponding steps. Most of the scripts were developed for running on the Huawei FusionServer Pro 5885H V5 server. You may download and adapt the scripts to suit your own requirements.
- Perl
- Python3
- Trimmomatic
- SPAdes
- Unicycle
- Prokka
- Prodigal
- HMMER
- MAFFT
- RAxML
- Pandas
- Numpy
- CheckM
- GTDB-Tk
- fastANI
- Kleborate
- Abricate
- Resfinder
- Snippy
- Gubbins
- Phytools
- Seqkit
- ComplexUpset
- regentrans
- BEAST
Take the KP16932 isolate as an example.
All assembled Illumina sequence data have been deposited in GenBank under the BioProject accession number PRJNA778807.
java -jar trimmomatic-0.36.jar PE -threads 5 KP16932_raw_1.fq.gz KP16932_raw_2.fq.gz KP16932_clean_1.fq.gz KP16932__unpaired_1.fq.gz KP16932_clean_2.fq.gz KP16932__unpaired_2.fq.gz
spades.py -1 KP16932_clean_1.fq.gz -2 KP16932_clean_2.fq.gz --isolate --cov-cutoff auto -o KP16932.fasta
unicycler -1 KP16932_1.clean_1.fq.gz -2 KP16932_2.clean_1.fq.gz -l KP16932.nanopore.fq.gz -o KP16932.unicycle.fasta
nohup gtdbtk classify_wf --genome_dir fasta_dir/ --out_dir fasta_dir.GTDB.out --extension fasta &
# fasta_dir, the input directory containing a set of genomic assembly sequences.
# fasta_dir.GTDB.out, output directory
fastANI --ql quer_genome.list --rl ref_genome.list -o FastANI.out -t 40
prokka KP16932.fasta --prefix KP16932 --outdir KP16932.prokka.out/KP16932 --compliant
kleborate --all -o kleborate.results.txt -a fasta_dir/*.fasta
# fasta_dir, the input directory containing a set of genomic assembly sequences.
mkdir ARG_dir
for f in `ls fasta_dir`; do abricate -db resfinder --nopath --minid 50 --mincov 70 --quiet fasta_dir/${f} > ARG_dir/${f%%.fasta}.tab; done
abricate --nopath --summary ARG_dir/*tab > ARG.tab
# fasta_dir, the input directory containing a set of genomic assembly sequences.
# call SNPs for multiple isolates from the same reference KP16932.
snippy-multi input.tab --ref KP16932.fa --cpu 24 > runme.sh
# input.tab, a tab separated input file as follows
# input.tab = ID assembly.fasta
# Isolate /path/to/contigs.fasta
less runme.sh # check the script makes sense
sh ./runme.sh # leave it running over lunch
# remove all the "weird" characters and replace them with N
snippy-clean_full_aln core.full.aln > clean.full.aln
### Gubbins
# detect recombination region
run_gubbins.py -f 50 -p gubbins clean.full.aln
# remove recombination region
snp-sites -c gubbins.filtered_polymorphic_sites.fasta > clean.core.aln
# -c only output columns containing exclusively ACGT
### RAxML
# build core SNP tree
raxmlHPC -f a -x 12345 -p 12345 -# 100 -m GTRGAMMAX -s clean.core.aln -n tree
# core_SNP.tre and mge_count.csv can be found in `MGE_ancestral_state` dictionary,
# selected replicon as example
setwd("path/work_dictionary")
library(phytools)
tree <- read.tree("core_SNP.tre")
#the phylogenetic tree built in 10 above.
mge <- read.csv("mge_count.csv",row.names=1) # input MGE number of each isolates.
mge<-as.matrix(mge)[,1] # selected replicon as example
# estimate ancestral states and compute variances & 95% confidence intervals for each node:
fit<-fastAnc(tree,mge,vars=TRUE,CI=TRUE)
fit
# projection of the reconstruction onto the edges of the tree
obj<-contMap(tree,mge,plot=FALSE)
plot(obj,legend=0.7*max(nodeHeights(tree)),
fsize=c(0.1,0.9), lwd=1, outline = F, leg.txt="Replicons",ftype="off")
# fsize, set font size
# outline, logical value indicated whether or not to outline the plotted color bar with a 1 pt
line.
# leg.txt, set title of legend.
# ftype="off", don't show leave's name.
# OR set colors manually
obj<-setMap(obj,c("red", "#fffc00", "green", "purple", "blue", "#d7ff00", "black"))
plot(obj,legend=0.7*max(nodeHeights(tree)),
fsize=c(0.1,0.9), lwd=1, outline = F, leg.txt="replicons",ftype="off")
# coverage_calculation.py can be found in `In-house_script` dictionary.
# Blastn each genome to plasmid sequence
makeblastdb -in plasmid.fasta -dbtype nucl -parse_seqids -out plasmid_db
mkdir blastn_result
for i in fasta_dir/*.fasta; do blastn -query $i -db plasmid_db -out blastn_result/${i##*/}.blastn.out -outfmt 6; done
# calculate coverage
seqkit fx2tab --length --name --header-line plasmid.fasta # calculate the length of plasmid
cd blastn_result
for i in *.out; do python coverage_calculation.py -i $i -l <plasmid length>; done > ../coverage_result.tab
# -l, length of plasmid
# KL64_gene_matrix.tab can be found in `Genotype` dictionary.
library(ggplot2)
library(ComplexUpset)
KL64 <- read.table("KL64_gene_matrix.tab",header=T, row.names=1)
matrix <- colnames(KL64)[3:13]
upset(KL64, matrix,min_size=0,base_annotations = list("intersection size" = intersection_size(counts = F,mapping = aes(fill=Year))))
# metadata.csv, clean.core.aln and clean.core.tree can be downloaded from `Transmission_analysis` dictionary.
library(regentrans)
library(ape)
library(tidyverse)
library(devtools)
library(ggtree)
library(pheatmap)
library(phytools)
library(gridExtra)
library(cowplot)
# set theme for plots
theme_set(theme_bw() + theme(strip.background = element_rect(fill="white",linetype='blank'), text=element_text(size=15)))
# this is if your metadata is in a csv file
metadata <- readr::read_csv("metadata.csv")
# this is if your alignment is in a fasta file
aln <- ape::read.dna("clean.core.aln", format = "fasta")
# this is if the tree is in Newick format
tr <- ape::read.tree("clean.core.tree")
# Pairwise SNV distance matrix
dists <- ape::dist.dna(x = aln, # DNAbin object as read in above
as.matrix = TRUE, # return as matrix
model = "N", # count pairwise distances
pairwise.deletion = TRUE # delete sites with missing data in a pairwise way
)
# Extracting location and patients as a vectors
# named vector of locations
locs <- metadata%>%select(isolate_id, facility)%>%deframe()
head(locs)
# named vector of patients
pt <- metadata%>%select(isolate_id, patient_id)%>%deframe()
head(pt)
# Visualizing intra-facility pair fraction distribution with help from get_frac_intra()
# get pair types for pairwise SNV distances (intra vs. inter)
pair_types <- get_pair_types(dists = dists, locs = locs, pt = pt)
# get fraction of intra-facility pairs for each SNV distance
frac_intra <- get_frac_intra(pair_types = pair_types)
# write out the the fraction of intra-facility pairs for different SNV distances,
#our results were produced from this table
write.csv( frac_intra, file = "frac_intra.csv")