NeurIPS'19: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting (Official Pytorch implementation for noisy labels). The implementation of class imbalance is available at https://github.com/xjtushujun/Meta-weight-net_class-imbalance.
================================================================================================================================================================
This is the code for the paper:
Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting
Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, Deyu Meng*
To be presented at NeurIPS 2019.
If you find this code useful in your research then please cite
@inproceedings{han2018coteaching,
title={Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting},
author={Shu, Jun and Xie, Qi and Yi, Lixuan and Zhao, Qian and Zhou, Sanping and Xu, Zongben and Meng, Deyu},
booktitle={NeurIPS},
year={2019}
}
The requiring environment is as bellow:
- Linux
- Python 3+
- PyTorch 0.4.0
- Torchvision 0.2.0
Here is an example:
python train_WRN-28-10_Meta_PGC.py --dataset cifar10 --corruption_type unif(flip2) --corruption_prob 0.6
The default network structure is WRN-28-10, if you want to train with ResNet32 model, please reset the learning rate delay policy.
A stable version is relased.
python MW-Net.py --dataset cifar10 --corruption_type unif(flip2) --corruption_prob 0.6
We thank the Pytorch implementation on glc(https://github.com/mmazeika/glc) and learning-to-reweight-examples(https://github.com/danieltan07/learning-to-reweight-examples).
Contact: Jun Shu (xjtushujun@gmail.com); Deyu Meng(dymeng@mail.xjtu.edu.cn).