This paper was accepted at AAAI 2022 SA poster session. [pdf]
All datasets are available in public.
- Download the DUTS-TR and DUTS-TE from Here
- Download the DUT-OMRON from Here
- Download the HKU-IS from Here
- Download the ECSSD from Here
- Download the PASCAL-S from Here
- Download the edge GT from Here.
TRACER
├── data
│ ├── DUTS
│ │ ├── Train
│ │ │ ├── images
│ │ │ ├── masks
│ │ │ ├── edges
│ │ ├── Test
│ │ │ ├── images
│ │ │ ├── masks
│ ├── DUT-O
│ │ ├── Test
│ │ │ ├── images
│ │ │ ├── masks
│ ├── HKU-IS
│ │ ├── Test
│ │ │ ├── images
│ │ │ ├── masks
.
.
.
- Python >= 3.7.x
- Pytorch >= 1.8.0
- albumentations >= 0.5.1
- tqdm >=4.54.0
- scikit-learn >= 0.23.2
- Run main.py scripts.
# For training TRACER-TE0 (e.g.)
python main.py train --arch 0 --img_size 320
# For testing TRACER with pre-trained model (e.g.)
python main.py test --exp_num 0 --arch 0 --img_size 320
- Pre-trained models of TRACER are available at here
- Change the model name as 'best_model.pth' and put the weights to the path 'results/DUTS/TEx_0/best_model.pth'
(here, the x means the model scale e.g., 0 to 7). - Input image sizes for each model are listed belows.
--arch: EfficientNet backbone scale: TE0 to TE7.
--frequency_radius: High-pass filter radius in the MEAM.
--gamma: channel confidence ratio \gamma in the UAM.
--denoise: Denoising ratio d in the OAM.
--RFB_aggregated_channel: # of channels in receptive field blocks.
--multi_gpu: Multi-GPU learning options.
--img_size: Input image resolution.
Model | Img size |
---|---|
TRACER-Efficient-0 ~ 1 | 320 |
TRACER-Efficient-2 | 352 |
TRACER-Efficient-3 | 384 |
TRACER-Efficient-4 | 448 |
TRACER-Efficient-5 | 512 |
TRACER-Efficient-6 | 576 |
TRACER-Efficient-7 | 640 |
@article{lee2021tracer,
title={TRACER: Extreme Attention Guided Salient Object Tracing Network},
author={Lee, Min Seok and Shin, WooSeok and Han, Sung Won},
journal={arXiv preprint arXiv:2112.07380},
year={2021}
}