Flink SQL connector for ClickHouse database, this project Powered by ClickHouse JDBC.
Currently, the project supports Source/Sink Table and Flink Catalog.
Please create issues if you encounter bugs and any help for the project is greatly appreciated.
| Option | Required | Default | Type | Description |
|---|---|---|---|---|
| url | required | none | String | The ClickHouse jdbc url in format clickhouse://<host>:<port>. |
| username | optional | none | String | The 'username' and 'password' must both be specified if any of them is specified. |
| password | optional | none | String | The ClickHouse password. |
| database-name | optional | default | String | The ClickHouse database name. |
| table-name | required | none | String | The ClickHouse table name. |
| use-local | optional | false | Boolean | Directly read/write local tables in case of distributed table engine. |
| sink.batch-size | optional | 1000 | Integer | The max flush size, over this will flush data. |
| sink.flush-interval | optional | 1s | Duration | Over this flush interval mills, asynchronous threads will flush data. |
| sink.max-retries | optional | 3 | Integer | The max retry times when writing records to the database failed. |
| sink.write-local | optional | false | Boolean | Deprecated, use use-local instead.Directly write data to local tables. |
| sink.partition-strategy | optional | balanced | String | Partition strategy: balanced(round-robin), hash(partition key), shuffle(random). |
| sink.partition-key | optional | none | String | Partition key used for hash strategy. |
| sink.ignore-delete | optional | true | Boolean | Whether to ignore delete statements. |
| sink.parallelism | optional | none | Integer | Defines a custom parallelism for the sink. |
| scan.partition.column | optional | none | String | The column name used for partitioning the input. |
| scan.partition.num | optional | none | Integer | The number of partitions. |
| scan.partition.lower-bound | optional | none | Long | The smallest value of the first partition. |
| scan.partition.upper-bound | optional | none | Long | The largest value of the last partition. |
| catalog.ignore-primary-key | optional | true | Boolean | Whether to ignore primary keys when using ClickHouseCatalog to create table. defaults to true. |
Upsert mode notice:
- Distributed table don't support the update/delete statements, if you want to use the update/delete statements, please
be sure to write records to local table or set
use-localto true. - The data is updated and deleted by the primary key, please be aware of this when using it in the partition table.
| Flink Type | ClickHouse Type |
|---|---|
| CHAR | String |
| VARCHAR | String / IP / UUID |
| STRING | String / Enum |
| BOOLEAN | UInt8 |
| BYTES | FixedString |
| DECIMAL | Decimal / Int128 / Int256 / UInt64 / UInt128 / UInt256 |
| TINYINT | Int8 |
| SMALLINT | Int16 / UInt8 |
| INTEGER | Int32 / UInt16 / Interval |
| BIGINT | Int64 / UInt32 |
| FLOAT | Float32 |
| DOUBLE | Float64 |
| DATE | Date |
| TIME | DateTime |
| TIMESTAMP | DateTime |
| TIMESTAMP_LTZ | DateTime |
| INTERVAL_YEAR_MONTH | Int32 |
| INTERVAL_DAY_TIME | Int64 |
| ARRAY | Array |
| MAP | Map |
| ROW | Not supported |
| MULTISET | Not supported |
| RAW | Not supported |
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-clickhouse</artifactId>
<version>1.14.3-SNAPSHOT</version>
</dependency>-- register a clickhouse table `t_user` in flink sql.
CREATE TABLE t_user (
`user_id` BIGINT,
`user_type` INTEGER,
`language` STRING,
`country` STRING,
`gender` STRING,
`score` DOUBLE,
`list` ARRAY<STRING>,
`map` Map<STRING, BIGINT>,
PRIMARY KEY (`user_id`) NOT ENFORCED
) WITH (
'connector' = 'clickhouse',
'url' = 'clickhouse://{ip}:{port}',
'database-name' = 'tutorial',
'table-name' = 'users',
'sink.batch-size' = '500',
'sink.flush-interval' = '1000',
'sink.max-retries' = '3'
);
-- read data from clickhouse
SELECT user_id, user_type from t_user;
-- write data into the clickhouse table from the table `T`
INSERT INTO t_user
SELECT cast(`user_id` as BIGINT), `user_type`, `lang`, `country`, `gender`, `score`, ARRAY['CODER', 'SPORTSMAN'], CAST(MAP['BABA', cast(10 as BIGINT), 'NIO', cast(8 as BIGINT)] AS MAP<STRING, BIGINT>) FROM T;
val tEnv = TableEnvironment.create(setting)
val props = new util.HashMap[String, String]()
props.put(ClickHouseConfig.DATABASE_NAME, "default")
props.put(ClickHouseConfig.URL, "clickhouse://127.0.0.1:8123")
props.put(ClickHouseConfig.USERNAME, "username")
props.put(ClickHouseConfig.PASSWORD, "password")
props.put(ClickHouseConfig.SINK_FLUSH_INTERVAL, "30s")
val cHcatalog = new ClickHouseCatalog("clickhouse", props)
tEnv.registerCatalog("clickhouse", cHcatalog)
tEnv.useCatalog("clickhouse")
tEnv.executeSql("insert into `clickhouse`.`default`.`t_table` select...");TableEnvironment tEnv = TableEnvironment.create(setting);
Map<String, String> props = new HashMap<>();
props.put(ClickHouseConfig.DATABASE_NAME, "default")
props.put(ClickHouseConfig.URL, "clickhouse://127.0.0.1:8123")
props.put(ClickHouseConfig.USERNAME, "username")
props.put(ClickHouseConfig.PASSWORD, "password")
props.put(ClickHouseConfig.SINK_FLUSH_INTERVAL, "30s");
Catalog cHcatalog = new ClickHouseCatalog("clickhouse", props);
tEnv.registerCatalog("clickhouse", cHcatalog);
tEnv.useCatalog("clickhouse");
tEnv.executeSql("insert into `clickhouse`.`default`.`t_table` select...");> CREATE CATALOG clickhouse WITH (
'type' = 'clickhouse',
'url' = 'clickhouse://127.0.0.1:8123',
'username' = 'username',
'password' = 'password',
'database-name' = 'default',
'use-local' = 'false',
...
);
> USE CATALOG clickhouse;
> SELECT user_id, user_type FROM `default`.`t_user` limit 10;
> INSERT INTO `default`.`t_user` SELECT ...;- Implement the Flink SQL Sink function.
- Support array and Map types.
- Support ClickHouseCatalog.
- Implement the Flink SQL Source function.