/kitti-tools

tools to operate kitti dataset, including point clouds projection, road segmentation, sparse-to-dense estimation and lane line detection.

Primary LanguagePythonMIT LicenseMIT

This is a package special for kitti data,

including tasks for exploring-data-analysis, sparse-to-dense estimation,

road segmentation and lane line detection.

to quickly get access to data, please use ./utils/data_provider.py or ./utils/velo_2_cam.py

  • subfolder and files illustration

  • kitti-tools
    ├─ data [source data]
    │ ├─ bin [lidar point clouds]
    │ ├─ calib [calibration files]
    │ ├─ img [RGB images]
    │ ├─ pcd [generated pcd point clouds]
    │ └─ readme.md
    ├─ dense_estimation [sparse-to-dense estimation]
    │ └─ points_estimation.py
    ├─ evaluation [general evalutation code]
    │ └─ data_similarity.py
    ├─ lane_detection [lane line detection]
    ├─ requirements.txt
    ├─ result [general results]
    ├─ road_segmentation [road segmentation]
    ├─ utils [general tools]
    │ ├─ canny.py
    │ ├─ config.py
    │ ├─ data_augmentation.py
    │ ├─ data_provider.py
    │ ├─ show_lidar.py
    │ ├─ velo_2_cam.py
    │ └─ velo_2_cam_origin.py

TODO:

  • load data as .pcd format
  • add pcl processing operation
  • create folder and load image via opencv-python
  • add projected lidar pixels to image
  • fix modified projection code
  • add lidar estimation code: reflectance
  • complete diastance calculation for images
  • add canny detecion for points
  • complete data_augmentation code
  • add road segmentation with RANSAC on point clouds